Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Линейные электрические цепи

Содержание:

Линейные электрические цепи:

Простая электрическая цепь состоит из источника и приемника электрической энергии. Если приемник представляет собой резистор, имеющий сопротивление R или проводимость G (рис. 3.1, а), то ток I и напряжение U источника связаны
законом Ома:

Линейные электрические цепи

Линейные электрические цепи

Для расчета электрических цепей и необходимо учитывать направление токов и напряжений. Хотя в общем случае ток является движением электрических зарядов разных знаков в противоположные стороны, условным положительным направлением тока принято считать направление перемещения положительных зарядов, т.е. в приемнике - от положительного зажима источника к отрицательному. Если ток идет в противоположном направлении, он получает отрицательный знак.

В соответствии с равенством U = RI положительное направление напряжения совпадает с положительным направлением тока, для встречного направления тока напряжение также получает отрицательный знак. Если направление тока (напряжения) неизвестно, его приходится выбирать произвольно и определять направление в результате расчета по знаку тока (напряжения).

В дальнейшем в большинстве случаев для краткости условное положительное направление называется просто направлением.

В цепи рис. 3.1, а источник расходует энергию, переходящую в сопротивлении в тепло; при этом мощность определяется законом Джоуля — Ленца:

Линейные электрические цепи

В системе СИ единицей мощности является в•а = вт (ватт).

Примером приемников, преобразующих электрическую энергию в другие виды, может служить индуктивный электрический двигатель. Как показано, в двигателе возникает э. д. с. индукцииЛинейные электрические цепи, направленная навстречу приложенному напряжению, а следовательно, и току; кроме того, двигатель имеет, очевидно, внутреннее сопротивление RB. Такого рода приемник может быть представлен в виде схемы, показанной на рис. 3.1, б. Аналогичен случай зарядки аккумулятора, когда ток направлен против э. д. с. аккумулятора, за счет чего и происходит превращение электрической энергии в химическую.

Таким образом, в этих случаях в цепи действует напряжение U источника и встречная э.д.с. Линейные электрические цепи приемника, и выражение для тока по закону Ома получает вид:

Линейные электрические цепи

Однако такой приемник можно заменить эквивалентным сопротив
лением. Так как напряжение U0 на участке цепи с э.д.с. Линейные электрические цепи по величине равно Линейные электрические цепи и направлено ей навстречу, т.е. U0 = —Линейные электрические цепи, эквивалентное сопротивление этого участка

Линейные электрические цепи

Иногда расчет цепей упрощается, если произвести обратную замену какого-либо сопротивления R0, по которому проходит ток I эквивалентной э. д. с., равной, очевидно,

Линейные электрические цепи

Отрицательный знак указывает на то, что эквивалентная э.д.с. направлена навстречу току.

Сложная электрическая цепь и ее графическое изображение, называемое схемой, состоит из ветвей. Ветвью называется участок, по которому проходит один и тот же ток. Точки, в которых сходятся не менее трех ветвей, называются узлами. В сложной цепи и ее схеме всегда имеются несколько замкнутых контуров, состоящих из разных ветвей.
Для любого узла на основе принципа непрерывности тока может быть написан первый закон Кирхгофа:

Линейные электрические цепи

т. е. алгебраическая сумма токов в ветвях, образующих узел, равна нулю. При этом токи, уходящие от узла, считаются положительными, а токи, приходящие к узлу — отрицательными (или наоборот). Например, в параллельной цепи с одним источником (рис. 3.2) токи совпадают по направлению с напряжением и для каждого из двух узлов цепи можно написать:

Линейные электрические цепи

Деление этого равенства на общее для всех ветвей напряжение U дает:

Линейные электрические цепи

Следовательно, проводимость всей цепи равна сумме проводимостей параллельно соединенных приемников.

Если выразить напряжения на ветвях, образующих любой контур, через потенциалы ϕ узлов, к которым примыкают ветви, то сумма этих напряжений

Линейные электрические цепи

Это и есть второй закон Кирхгофа:

Линейные электрические цепи

т.е. алгебраическая сумма напряжений на ветвях, образующих контур, равна нулю. При этом напряжения ветвей, у которых потенциал первого по направлению обхода узла выше, чем второго, считаются положительными, остальные — отрицательными. Применяя это правило для последовательной цепи с одним источником и учитывая, что все напряжения совпадают по направлению с током, для указанного на рис. 3.3 направления обхода надо написать:

Линейные электрические цепи

Деление этого равенства на общий для всей цепи ток I дает

Линейные электрические цепи

Следовательно, сопротивление всей цепи равно сумме сопротивлений последовательно соединенных приемников.

Линейные электрические цепи

Основной задачей расчета электрической цепи является ее анализ, который обычно заключается в определении токов, напряжений и мощностей ветвей цепи по заданным их сопротивлениям или проводимостям и по заданным источникам электрической энергии. Эти задачи имеют однозначное решение, которое для линейных цепей может быть получено составлением и решением системы алгебраических уравнений с учетом законов Кирхгофа, Ома и Джоуля— Ленца.

Второй важной задачей расчета цепей является синтез, т. е. создание цепи с заданными свойствами.

Источники напряжения и тока и их эквивалентность

В зависимости от принципа действия источники электрической энергии можно разделить на источники напряжения (э.д.с.) и источники тока. Так, например, химические источники электрической энергии основаны на возникновении разности потенциалов между различными электродами, помещенными в электролит. Эта разность потенциалов, наибольшая при разомкнутой цепи, т. е. при холостом ходе, и называется э. д. с. Линейные электрические цепи. При нагрузке разность потенциалов становится меньше э. д. с. Линейные электрические цепи из-за появления встречной э.д.с. поляризации и падения напряжения во внутреннем сопротивлении и называется напряжением U.

Линейные электрические цепи

Индуктивные генераторы основаны на возникновении э.д.с. индукции при изменении магнитного поля . При нагрузке их напряжение U также становится меньше э. д. с. Линейные электрические цепи холостого хода, в частности из-за падения напряжения во внутреннем сопротивлении.

Таким образом, эти источники являются источниками напряжения; при расчете цепей источники напряжения обычно заменяются эквивалентной схемой (рис. 3.4), состоящей из последовательного соединения источника постоянной э.д.с. Линейные электрические цепи и внутреннего сопротивления RB, величина которого учитывает все причины изменения напряжения при нагрузке.
Как было принято, направление напряжения Uсовпадает с направлением тока I во внешней цепи — от плюса к минусу, что может быть учтено индексом ±, т. е. U+. Тогда э. д. с. в источнике, также совпадающая по направлению с током, но текущим в источнике от минуса к плюсу, должна быть обозначена Линейные электрические цепи. При холостом ходе Линейные электрические цепи

При нагрузке можно применить закон Ома, сложив внешнее R и внутреннее RB сопротивления:

откуда Линейные электрические цепи

Обычно это соотношение записывают без индексов: Линейные электрические цепино при этом следует помнить о противоположных положительных направлениях U и Линейные электрические цепи.
При внешних сопротивлениях R, много больших, чем внутреннее сопротивление Линейные электрические цепи, напряжение U остается практически постоянным Линейные электрические цепи.при изменении R.

Емкостные генераторы основаны на возникновении тока при изменении электрического поля. При коротком замыкании они отдают во внешнюю цепь весь генерируемый ими внутренний ток J.

При нагрузке, т. е. включении сопротивления, появляется напряжение, и ток внешней цепи I становится меньше J, в частности, из-за
утечки через несовершенную изоляцию генератора.

Таким образом, этот источник электрической энергии является источником тока. При расчете цепей он обычно заменяется эквивалентной схемой (рис. 3.5), состоящей из параллельного соединения источника постоянного внутреннего тока J и внутренней проводимости GB, величина которой учитывает все причины изменения внешнего тока при нагрузке. Тогда напряжение U и ток I в проводимости G нагрузки будут:

Линейные электрические цепи

При проводимостях G нагрузки, много больших, чем внутренняя проводимость Линейные электрические цепи ток I нагрузки остается практически неизменным Линейные электрические цепи при изменении G.
При расчете цепей принцип действия реальных источников электрической энергии несуществен и источник напряжения может быть заменен источником тока, ему эквивалентным, т. е. таким, который не вызовет изменения напряжений и токов остальных участков цепи.

Аналогично всякий источник тока может быть заменен эквивалентным ему источником напряжения. Такие замены в ряде случаев упрощают расчеты. Так как каждый из этих источников определяется двумя параметрами (см. рис. 3.4 и 3.5), условиями эквивалентности должны быть два равенства, например, равенство напряжений при холостом ходе Линейные электрические цепи и токов при коротком замыкании Линейные электрические цепи

откудаЛинейные электрические цепи

Таким образом, источник тока, эквивалентный источнику напряжения, должен генерировать ток, равный току короткого замыкания источника напряжения, и иметь параллельное внутреннее сопротивление, равное последовательному внутреннему сопротивлению источника напряжения.

Положительное направление тока J выбирается таким, чтобы направление тока во внешней цепи осталось тем же.

При равенстве полезных мощностей Р=UI, отдаваемых эквивалентными источниками во внешнюю цепь, полные мощности (т. е. вместе с потерями в их внутреннем сопротивлении) Рн источника напряжения и Рт источника тока

Линейные электрические цепи

и их к.п.д., равные отношению полезной мощности к полной их мощности,

Линейные электрические цепи

в общем случае не равны между собой. К. п. д. Линейные электрические цепи при Линейные электрические цепи а Линейные электрические цепи и лишь при R = Rв полные мощности и к.п.д. эквивалентных источников становятся одинаковыми.

Линия передачи и работа источника на нагрузку

В качестве первой, наиболее простой задачи на расчет цепи практический интерес представляет исследование передачи энергии постоянным током (рис. 3.6, а) от источника с постоянным напряжением U1 через постоянное сопротивление R0 обоих проводов линии к переменному сопротивлению R2 нагрузки.

Линейные электрические цепи

Если пренебречь током утечки между проводами линии через несовершенную изоляцию, то ток цепи

Линейные электрические цепи

По мере уменьшения R2 ток I будет расти от нуля при холостом ходе (R2 = Линейные электрические цепи) до максимального значения Линейные электрические цепи при коротком замыкании (R2= 0).
В дальнейшем ток I принят за независимую переменную и отложен по оси абсцисс графика рис. 3.6, б.

Напряжение на сопротивлении R0 линии, часто называемое падением напряжения в линии и равное U0 =R0l, растет линейно с током от нуля (холостой ход) до U1 (короткое замыкание).

Напряжение на приемнике

Линейные электрические цепи

при холостом ходе равно U1; с уменьшением R2 напряжение U2 тоже
уменьшается до нуля при коротком замыкании. График изменения U0 и U2 представляет собой прямую, причем U2 отсчитывается от оси абсцисс, a U0 — от горизонтали U1 = const.

Мощность, отдаваемая источником энергии в цепь,

Линейные электрические цепи

растет пропорционально току.
Мощность, расходуемая в линии (потери),

Линейные электрические цепи

возрастает пропорционально квадрату тока и при коротком замыкании становится равной мощности источника.

Мощность, потребляемая приемником (полезная мощность),

Линейные электрические цепи

равна нулю при холостом ходе (I = 0) и при коротком замыкании (U2 = 0). Из исследования Р2 (I) на максимум:

Линейные электрические цепи

вытекает, что Р2 имеет максимум при Линейные электрические цепит. е. при R2 = R0.
Следовательно, при равенстве сопротивлений приемника R2 и линии R0 полезная мощность получает максимальное значение:

Линейные электрические цепи

Зависимости Линейные электрические цепи также приведены на рис. 3.6, б.

К.п. д. η электропередачи равен отношению полезной мощности к мощности источника:

Линейные электрические цепи

Он равен нулю при коротком замыкании и изменяется, как и U2, по линейному закону, стремясь к единице при холостом ходе. При передаче максимальной мощности к. п. д. равен 0,5; при этом напряжение приемника равно половине напряжения источника.
Из рис. 3.6, б видно, что мощность Линейные электрические цепи может быть передана при двух режимах, отмеченных одним и двумя штрихами, причем в первом режиме к.п.д. и напряжение на приемнике будут больше, а ток — меньше, чем во втором. Следовательно, из всех физически возможных режимов работы технически целесообразными будут режимы в левой части графика до Линейные электрические цепи.

Режим передачи максимальной мощности применяется в маломощных линиях связи, так как там низкий к. п. д. роли не играет. Передача больших мощностей осуществляется при высоких значениях к. п. д., причем величина оптимального к. п. д., а следовательно, потерь определяется экономическими расчетами. При этом допустимые потери Р0 выражаются в долях полезной мощности P2: Линейные электрические цепигде коэффициент потерь k равен 2÷10%. При передаче мощности P2 на расстояние l (длина проводов 21) при напряжении U2 и, следовательно токе Линейные электрические цепи эти потери

Линейные электрические цепи

откуда определяется необходимое сечение проводов

Линейные электрические цепи

Из этого выражения видно преимущество высокого напряжения: при той же передаваемой мощности сечение провода обратно пропорционально квадрату напряжения. Однако с ростом напряжения увеличивается стоимость изоляции линии. На практике применяют тем большее напряжение, чем больше передаваемая мощность Р2 и дальность передачи I.

Потери в проводах превращаются в тепло и повышают их температуру. В нормах для всех типов и стандартных сечений проводов указан максимально допустимый ток по условиям нагрева. Поэтому полученное по расчету сечение, округленное до ближайшего стандартного, может быть применено лишь в том случае, когда допустимый для него ток равен или больше тока линии; в противном случае приходится выбирать большее сечение.

Первая передача электрической энергии постоянным током была осуществлена Ф. А. Пироцким в Петербурге в 1874 г. от генератора 6 л. с. на расстояние 200 м. В 1880 г. Д. А. Лачинов в статье «Электромеханическая работа» показал, что при больших расстояниях можно сохранить высокий к. п. д. передачи, если увеличить напряжение.

В 1882 г. Депре построил линию передачи от гидроэлектростанции в Мисбахе до Мюнхена длиной 57 км при напряжении около 1000 в, с полезной мощностью 0,25 л.с. и к.п.д. 60%.

В последующие годы линии постоянного тока получили распространение только для передачи небольших мощностей на малые расстояния; для дальних и мощных электропередач стал широко применяться переменный ток, позволяющий весьма просто в начале линии повышать, а в конце понижать напряжение с помощью трансформаторов. В некоторых случаях мощных передач оказалась целесообразной также передача энергии постоянным током, но при сверхвысоком напряжении. В СССР уже ряд лет работает электропередача постоянным током из Волгограда в Донбасс мощностью 720 000 квт при напряжении 800 кв.

Полученные выводы можно перенести на задачу о работе источника напряжения (см. рис. 3.4.) на переменную нагрузку, заменив напряжение их на э.д.с. Линейные электрические цепи источника, сопротивление R0 линии на внутреннее сопротивление RB источника и обозначив переменную нагрузку R2 через R. Следовательно, источник будет отдавать приемнику максимальную мощность при R = RB но при этом такая же мощность будет расходоваться внутри источника. Обычно источники напряжения работают в более экономичном режиме, когда сопротивление нагрузки в несколько раз превышает внутреннее сопротивление источника.

Расчет цепей методами преобразования и пропорционального пересчета

Метод преобразования заключается в замене участков цепи более простыми, им эквивалентными, т. е. не вызывающими изменения напряжений и токов в остальной части цепи.

Линейные электрические цепи

При расчете цепи со смешанным, т. е. параллельно-последовательным соединением приемников, питаемой одним источником (например, рис. 3.7, а) группа приемников, соединенных параллельно, заменяется одним, им эквивалентным (рис. 3.7, б), с проводимостью

Линейные электрические цепи

Группа приемников, соединенных последовательно, заменяется одним, им эквивалентным (рис. 3.7, в), с сопротивлением Линейные электрические цепи
После замены всей цепи одним приемником определяется его ток I при заданном напряжении или напряжение при заданном токе.

Затем схема постепенно разворачивается в первоначальную цепь с попутным определением напряжений и токов отдельных приемников:

Линейные электрические цепи

Эту же задачу можно решить методом пропорционального пересчета, задавшись током в одной из параллельных ветвей, что позволит определить напряжения и токи всех ветвей и напряжение всей цепи U', отличное от заданного напряжения U. Так как в линейной цепи токи пропорциональны напряжениям, для получения правильного результата надо полученные значения умножить на U/U'.

Линейные электрические цепи

Методы преобразования и пропорционального пересчета применимы для некоторых цепей, не являющихся сочетанием последовательных и параллельных соединений. Их схемы состоят из гак называемых треугольников (рис. 3.8, а) и трехлучевых звезд (рис. 3.8, б). Примером может служить неуравновешенный мост (рис. 3.9, а). Контуры I-2-3-1 и 2-3-4-2 этой цепи, состоящие из трех ветвей, являются треугольниками, узлы 2 и 3 — нулевыми точками звезд. Расчет такой цепи можно свести к задаче на смешанное соединение, если заменить один из треугольников эквивалентной ему звездой или одну из звезд эквивалентным ей треугольником.

Так, треугольник Линейные электрические цепи заменен на рис. 3.9, б звездой Линейные электрические цепизвезда Линейные электрические цепи — треугольникомЛинейные электрические цепи на рис. 3.9, в. Получившиеся цепи являются уже сочетанием последовательно-параллельных соединений и решаются указанными выше путями; затем совершается обратный переход к исходной цепи.

Линейные электрические цепи

Для эквивалентности треугольника и звезды (см. рис. 3.8) необходимо и достаточно, чтобы результирующе сопротивление между каждой парой точек при отключенной третьей точке у обеих цепей было одинаковым. Так, для точек l, 2 при отключенной точке 3

Линейные электрические цепи

Аналогичные уравнения для точек 2, 3 и 3, 1 можно написать, пользуясь круговой перестановкой индексов 1 , 2 , 3:

Линейные электрические цепи

Складывая уравнения (3.1) и (3.3) и вычитая (3.2), можно получить переходные формулы от треугольника к звезде:

Линейные электрические цепи

и далее по круговой перестановке

Линейные электрические цепи

Для вычисления переходных формул от звезды к треугольнику удобно мысленно замкнуть у обеих цепей две одноименные пары точек и приравнять проводимости между этой общей точкой и третьей точкой.

Линейные электрические цепи

Так, между точкой 2, 3 и тoчкой 1 проводимости (рис. 3.10)

Линейные электрические цепи

и далее по круговой перестановке индексов

Линейные электрические цепи

Решая аналогично предыдущему уравнения (З.1'), (3.2'), (3.3'), можно получить переходную формулу

Линейные электрические цепи

и далее по круговой перестановке

Линейные электрические цепи

Давая общую оценку методам преобразования и пропорционального пересчета в изложенном виде, можно указать на их простоту, однако их применение ограничено цепями с одним источником энергии.

Расчет цепей по законам Кирхгофа

Две формы записи законов Кирхгофа:

Были даны оба закона Кирхгофа: первый — для узлов и втoрой — для контуров в следующей симметричной форме записи:

Линейные электрические цепи

т. е. алгебраическая сумма токов в ветвях, сходящихся в узле, равна нулю.

Линейные электрические цепи

т. е. алгебраическая сумма напряжений на ветвях, входящих в контур, равна нулю.

Если между узлами цепи параллельно включены источник тока и приемник (рис. 3.11, а), можно объединить внутреннюю проводимость
GB с внешней G':

Линейные электрические цепи

Если в ветви последовательно включены источник напряжения и приемник (рис. 3.11, б), можно объединить внутреннее сопротивление RB с внешним R':

RB + R’ = R.

Тогда для тока I в выходной ветви рис. 3.11, а и напряжения U на ветви рис. 3.11, б можно написать:

Линейные электрические цепи

Эти равенства следует понимать алгебраически: знак минус сохраняется, когда источники отдают энергию, т. е. когда при выбранных направлениях напряжений и токов и обходе контура J, G (рис. 3.11, а) совпадают действительные направления J и U, а на рис. 3.11, б совпадают направления Линейные электрические цепи и I.

Линейные электрические цепи

Подставляя эти соотношения в первую форму записи законов Кирхгофа, можно получить вторую симметричную форму их записи:

Линейные электрические цепи

т.е. алгебраическая сумма внутренних токов источников тока в ветвях, сходящихся в узле, равна алгебраической сумме токов в проводимостях остальных ветвей этого узла.

Линейные электрические цепи

т.е. алгебраическая сумма э.д.с. источников напряжения, входящих в контур, равна алгебраической сумме напряжений на сопротивлениях ветвей этого контура.

Так как обычно источники электрической энергии задаются в виде
источников напряжения, первый закон Кирхгофа записывается в пер
вой форме, а второй — во второй, и система этих уравнений получает
следующий несимметричный вид:

Линейные электрические цепи

Составление уравнений по законам Кирхгофа

Обычно заданными являются величины и направления всех э. д. с. источников напряжения и внутренних токов источников тока и значения всех внутренних и внешних сопротивлений или проводимостей цепи, а определяют токи и по ним — напряжения ветвей. Поэтому число неизвестных равно числу р ветвей схемы и, следовательно, столько же независимых уравнений нужно составить по первому и второму законам Кирхгофа.

Так как при составлении уравнений необходимо учесть направления всех токов, направлениями токов следует задаться. Применяя первый закон в первой форме записи, токи, приходящие к узлу и уходящие от него, следует брать с разными знаками. Применяя второй закон во второй форме записи, э.д.с. и токи, направления которых совпадают с произвольно выбранным направлением обхода контура, следует считать имеющими положительный знак, остальные — отрицательный, или наоборот.

Уравнения, составленные по первому закону Кирхгофа для цепи с q узлами, будут независимыми лишь для q — 1 узлов, так как уравнение для последнего узла q является следствием предыдущих. Следовательно, по второму закону Кирхгофа надо составить р — (q— 1) = р — q + 1 независимых уравнений.

В большинстве случаев можно изобразить цепь на плоскости так, чтобы она была сочетанием элементарных контуров, не содержащих внутренних ветвей (рис.3.12). Уравнения, составленные для элементарных контуров, будут, очевидно, независимыми, а их число равно необходимому (доказывается в топологии — разделе геометрии).

Линейные электрические цепи

Уравнение для какого-либо другого контура будет, очевидно, следствием уравнений для элементарных контуров, охватываемых этим неэлементарным контуром. Поэтому выбор элементарных контуров для составления уравнений по второму закону Кирхгофа гарантирует от ошибок, возможных при использовании произвольных контуров цепи.

Например, для цепи рис. 3.12, имеющей р = 6 ветвей, q = 3 узла и р—q +1 = 4 элементарных контура, при указанных на схеме направлениях э.д.с., токов и обхода элементарных контуров, независимые уравнения, составленные по первому и второму законам Кирхгофа, имеют вид:

Линейные электрические цепи

Решая систему уравнений любым известным из алгебры способом, находят все неизвестные токи ветвей. Отрицательный знак указывает на то, что действительное направление тока обратно выбранному.

После определения токов по закону Ома вычисляются напряжения, а по закону Джоуля—Ленца находят мощности. Достоинством рассмотренного метода является его общность, а недостатком — громоздкость решения системы, состоящей из большого числа уравнений. Поэтому кроме непосредственного использования уравнений по законам Кирхгофа применяются основанные на них излагаемые далее методы расчета сложных цепей, упрощающие их схемы (методы наложения и эквивалентного источника энергии) и методы, уменьшающие число неизвестных (методы контурных токов и узловых напряжений).

Метод наложения

Если для узлов и контуров любой электрической цепи, содержащей источники напряжения с э. д. с. Линейные электрические цепи написать уравнения по законам Кирхгофа:

Линейные электрические цепи

получается система линейных уравнений, из которой ток каждой ветви определяется однозначно.

Если поочередно предположить, что в цепи существует только э. д. с. Линейные электрические цепи а остальные равны нулю, затем — только э.д.с. Линейные электрические цепии т. д., можно для каждой э.д.с. вычислить соответствующие ей токи ветвей, составив уравнения по законам Кирхгофа при тех же направлениях э. д. с. и токов:

Линейные электрические цепи

Сложение почленно этих уравнений

Линейные электрические цепи

даст систему, которая также имеет единственное решение для всех неизвестных Линейные электрические цепии т. д. Из сравнения исходных и только что полученных уравнений, имеющих одинаковые коэффициенты и правые части, видно, что решения обеих систем должны совпадать и, следовательно,

Линейные электрические цепи

т. е. ток каждой ветви цепи равен алгебраической сумме токов этой ветви, протекающих под действием каждой э. д. с. в отдельности. Это частный случай известного принципа наложения.

На принципе наложения основан метод наложения. Он состоит в определении и последующем суммировании, т. е. наложении, токов ветвей от каждой э.д. с. в отдельности. При этом остальные э. д. с. приравниваются нулю, т. е. нужно мысленно их удалить и представить замкнутыми накоротко каждую пару тех точек цепи, между которыми действуют эти э. д. с. (например, точки а и b на рис. 3.11, 6 ). Тогда от этих источников в цепи остаются только их внутренние сопротивления.

Напряжение на каком-либо участке цепи с сопротивлением R

Линейные электрические цепи

т. е. напряжение на участке цепи равно алгебраической сумме напряжений для каждой составляющей тока. Следовательно, и при определении напряжений может быть применен метод наложения.

Суммируя токи от отдельных групп э. д. с., можно прийти к заключению, что метод наложения справедлив также и для токов и для напряжений от отдельных групп э. д. с., на которые можно произвольно разбить все э. д. с., действующие в цепи.

Линейные электрические цепи

Метод наложения целесообразно применять в том случае, если, приравнивая нулю все э. д. с., кроме одной (или их группы), упрощают цепь. Например, для цепи рис. 3.13, а при Линейные электрические цепи= 0 или Линейные электрические цепи= О получаются, соответственно, параллельно-последовательные цепи рис. 3.13, б и в, легко рассчитываемые методом преобразования. При этом действительное направление составляющих токов определяется направлением э. д. с. и, выбирая произвольно направления результирующих токов, при наложении следует совпадающие с ними по
знаку составляющие брать положительными, и наоборот. Так, для направлений токов, указанных на рис. 3.13, а — в,

Линейные электрические цепи

Принцип наложения, как видно из его доказательства, основан на линейном характере уравнений по законам Ома и Кирхгофа при постоянстве коэффициентов уравнений, т. е. сопротивлений цепи.

Очевидно, что принцип наложения справедлив и для случая, когда источниками энергии являются источники тока. Применяя метод наложения в этом случае и считая, например, несуществующим источник в какой-либо ветви, т. е. принимая его внутренний ток J = 0, следует представить себе цепь этого тока разомкнутой; тогда от источника тока в цепи остается только его внутренняя проводимость GB.
Необходимо отметить, что наложение неприменимо для мощностей, так как они являются квадратичными функциями токов и напряжений.

Метод взаимности

Пусть в первую ветвь Т-образной схемы, состоящей из трех разных сопротивлений R1, R2, R3, соединенных звездой (рис. 3.14, а), включена э. д. с. Линейные электрические цепи, а выходные зажимы замкнуты (рис. 3.14, б).
Направление токов всех ветвей определяется направлением э. д. с. Линейные электрические цепи
Ток I1 распределится между параллельно соединенными второй и третьей ветвями обратно пропорционально их сопротивлениям.
Тогда ток во второй ветви

Линейные электрические цепи

Если поменять местами индексы 1 и 2, очевидно, получится значение тока I1 в первой ветви при таком переносе э. д. с. Линейные электрические цепи во вторую ветвь, чтобы ее направление совпало с направлением тока I2 (рис. 3.14, в).

Линейные электрические цепи

Выражение I2 симметрично относительно этих индексов, поэтому I1 = I2.
Как будет показано , Т-образная схема эквивалентна любой сложной цепи, не содержащей источников энергии и имеющей две пары зажимов. Следовательно, установленный принцип взаимности для Т-образной схемы имеет самый общий характер и может быть сформулирован следующим образом: если э.д.с. Линейные электрические цепи, действуя в любой ветви сколь угодно сложной цепи, не содержащей других э. д. с., вызывает в другой ветви ток I, то перенесенная в нее та же э. д. с. вызовет в первой ветви такой же ток I. Принцип взаимности был установлен Кирхгофом.

На принципе взаимности основан метод взаимности. Этот метод удобно применять для расчета цепей с одной э. д. с., когда ее перенос упрощает цепь. Пусть, например, в неуравновешенном мосте рис. 3.15, а требуется определить ток в диагонали R, причем источник напряжения не имеет внутреннего сопротивления. Направление токов во всех четырех сторонах моста определяется направлением э. д. с. Линейные электрические цепи, направление тока I в диагонали выбрано произвольно. Перенос э. д. с. Линейные электрические цепи в эту диагональ (рис. 3.15, б) превращает сложную цепь в схему с последовательно-параллельным соединением сопротивлений.

Так как в цепи рис. 3.15, а направление э. д. с. и тока в ветви источника совпадают, направление э. д. с., перенесенной в диагональ, должно также совпадать с выбранным направлением тока I в диагонали (см. рис. 3.15, б). Тогда ток в ветви, где раньше был источник, по величине и знаку равен искомому току I в диагонали.

Линейные электрические цепи

Метод эквивалентного источника анергии

Этот метод применяется для определения тока (или напряжения) в сопротивлении (проводимости) одной ветви сложной цепи, Если эта ветвь содержит источники энергии, их следует считать принадлежащими к остальной части сложной цепи.

Линейные электрические цепи

Ветвь, не содержащая источников энергии, называется пассивным двухполюсником, так как она включается в цепь с помощью двух зажимов. Цепь без этой ветви, условно показанная на рис. 3.16, а прямоугольником А, имеет также два зажима и из-за наличия источников носит название активного двухполюсника.

Для обоснования метода сопротивление R исследуемой ветви, заменяется эквивалентной э. д. с. Линейные электрические цепи = — RI = —U (рис. 3.16, б), где I и U — искомые ток и напряжение, совпадающие по направлению, после чего применяется метод наложения в два этапа.

Сначала принимаются в расчет все источники энергии активного двухполюсника, а э. д. с. Линейные электрические цепи замыкается накоротко (рис. 3.16, в). Тогда ток I' ветви равен, очевидно, току Iк-в короткого замыкания активного двухполюсника, и совпадает , по направлению с током I. Затем учитывается только э. д. с. при этом в источниках напряжения, включенных в активный двухполюсник, замыкаются накоротко э.д. с., а в источниках тока — размыкаются цепи их внутренних токов . Активный двухполюсник превращается в пассивный П
(рис. 3.16, г). Он содержит только внутренние сопротивления источников и все остальные сопротивления своих ветвей. Пусть эквивалентная проводимость этого двухполюсника относительно его зажимов равна GB. Тогда ток ветви для второго этапа, если считать его направление совпадающим с I', равен

Линейные электрические цепи

Действительный ток исследуемой ветви с проводимостью Линейные электрические цепи равен алгебраической сумме токов обоих этапов:

Линейные электрические цепи

Из аналогии этой формулы с выражением для напряжения источника тока видно, что активный двухполюсник эквивалентен источнику тока (см. рис. 3.5) с внутренним током J, равным току Iкэ короткого замыкания двухполюсника, и с внутренней проводимостью GB, равной проводимости этого же двухполюсника, но без источников энергии.

Из выражения (3.4) следует, что при холостом ходе, т. е. при G = 0, напряжение на выходных зажимах двухполюсника будет:

Линейные электрические цепи

Из аналогии этой формулы с выражением для тока источника напряжения видно, что активный двухполюсник эквивалентен также источнику напряжения (см. рис. 3.4) с э.д.с., равной напряжению Ux.х на зажимах разомкнутого двухполюсника (рис. 3.16, д), и внутренним сопротивлением, равным сопротивлению этого же двухполюсника, но без источников энергии (рис. 3.16, е).

В замене сложной цепи со многими источниками энергии одним источником напряжения или тока и заключается метод эквивалентного источника энергии. Вместо обычногорасчета заданной цепи решаются две более простые задачи — определение Uх.х при разомкнутой или Iкз при короткозамкнутой ветви, что упрощает цепь, и определение RB или G„ при отсутствии источников;
затем найденные величины подставляются в выражения (3.4) или (3.5).

Примером применения метода эквивалентного источника напряжения может служить задача определения тока I в диагонали ab неуравновешенного моста; расчет упрощается при пренебрежении внутренним сопротивлением источника, питающего цепь; направление э. д. с. и выбранные направления токов ветвей указаны на рис. 3.15, а.

Размыкание ветви ab для определения напряжения Uxx (см. рис. 3.15, в) превращает сложную исходную цепь в последовательно параллельную, легко решаемую методом преобразования:

Линейные электрические цепи

При замыкании накоротко зажимов c u d для определения сопротивления RB цепи между точками а и b (см. рис. 3.15, г) цепь превращается в параллельно-последовательную, откуда

Линейные электрические цепи

Тогда искомый ток

Линейные электрические цепи

Ток в диагонали будет отсутствовать, если выражение, стоящее в скобках, обратится в нуль. Отсюда вытекает условие равновесия моста:

Линейные электрические цепи

Решая эту же задачу методом эквивалентного источника тока, нужно мысленно осуществить короткое замыкание ветви аb это превращает цепь в параллельно-последовательную, и вычисление тока Iк.з не представляет затруднений.

Методы эквивалентного источника напряжения или тока особенно удобны, если надо определить ток I или напряжение U одной ветви при нескольких значениях ее сопротивления R или проводимости О.

Такая задача часто встречается в практике, так как нагрузка обычно бывает переменной. Тогда в формулах (3.4) и (3.5) изменяют лишь значения G и R, оставляя без изменения остальные вычисленные для этой цепи величины.

Метод контурных токов

Этот метод, предложенный Максвеллом, можно обосновать, предполагая, что в ветвях цепи последовательно с приемниками включены источники напряжения (см. рис. 3.11, б). Примером может служить цепь рис. 3.17, рассчитанная по законам Кирхгофа. Здесь внутренние сопротивления источников объединены с сопротивлениями приемников и произвольно заданы направления токов ветвей. Чтобы обобщить вывод на случай заданных источников тока, их надо заменить эквивалентными источниками напряжения.

Каждому независимому контуру приписывается произвольно направленный контурный ток. Для плоских схем удобно в качестве независимых контуров взять элементарные контуры и придать всем контурным токам одно и то же направление, совпадающее с направлением обхода, например по часовой стрелке. Контурные токи, проходящие также по внешним ветвям, являются для этих ветвей реально существующими, например ток IА = I1 контура А.

Линейные электрические цепи

Контурные токи внутренних контуров, например ток Iв контура В, являются
фиктивными величинами, введенными для удобства расчетов. Реальные токи
внутренних ветвей можно найти как разность токов двух контуров, в которые входит эта ветвь; так как для рис. 3.17 выбранное направление тока I2 ветви с R2 совпадает с IА, то

Линейные электрические цепи (3.6)

Взятая по направлению обхода алгебраическая сумма всех э. д. с., входящих в контур, называется контурной э. д. с., сумма всех сопротивлений контура называется контурным сопротивлением. Так, для контуров А и В контурные э. д. с. и сопротивления, соответственно, имеют вид:

Линейные электрические цепи

Сопротивление общей ветви двух контуров называется общим сопротивлением, например,

Линейные электрические цепи

Тогда вместо уравнения по второму закону Кирхгофа для контура А

Линейные электрические цепи

можно написать:

Линейные электрические цепи

В общем виде система уравнений для всех N= р — q + 1 независимых контуров при их обходе в одном направлении получит вид:

Линейные электрические цепи

В этой системе уравнений члены с контурным сопротивлением входят с положительным знаком, члены с общим сопротивлением — с отрицательным. Если в каком-либо контуре нет источников э. д. с., в правую часть соответствующего уравнения надо подставить нуль; если два контура не имеют общей ветви, вместо соответствующего общего сопротивления надо также подставить нуль.

Таким образом, вместо системы из р уравнений по первому и второму законам Кирхгофа, по методу контурных токов составляется система из р — q + 1 уравнений только по второму закону Кирхгофа.

Так, для цепи рис. 3.17 вместо шести уравнений (двух по первому и четырех по второму законам Кирхгофа) по методу контурных токов составляется следующая система из четырех уравнений:

Линейные электрические цепи

После определения контурных токов находят действительные токи ветвей. Ток внешней ветви совпадает с соответствующим положительным контурным током и противоположен отрицательному. Ток внутренней ветви, определяемый как разность контурных токов (см. формулу 3.6), совпадает с направлением большего контурного тока.

Приведенная выше общая система уравнений для контурных токов стандартна; поэтому без ее составления можно по схеме цепи сразу написать определитель системы уравнений и по нему найти контурные токи.

Метод узловых напряжений

Этот метод, также предложенный Максвеллом, можно обосновать, предполагая, что между узлами цепи включены источники тока параллельно с приемниками (см. рис. 3.11,а). Примером может служить цепь рис.3.18; здесь внутренние проводимости источников объединены с проводимостями приемников.

Линейные электрические цепи

По аналогии с методом контурных токов вводятся новые понятия, что сделано далее на примере цепи рис. 3.18. Узловой ток, равный алгебраической сумме внутренних токов источников тока в ветвях, сходящихся в узле:

Линейные электрические цепи

Узловая проводимость, равная сумме проводимостей ветвей, сходящихся в этом узле:

Линейные электрические цепи

Общая проводимость, равная проводимости ветви, соединяющей два узла:

Линейные электрические цепи

Узловое напряжение, например UA, равное напряжению между узлом А и одним из узлов, принятым за опорный.

Напряжение каждой ветви равно, очевидно, разности узловых напряжений узлов, к которым примыкает данная ветвь. Например, учитывая направления внутренних токов,

Линейные электрические цепи

Тогда для узла А вместо уравнения по первому закону Кирхгофа во второй форме, составленного в соответствии с правилом знаков,

Линейные электрические цепи

можно написать

Линейные электрические цепи

Так как один узел принимается за опорный, его узловое напряжение обращается в нуль.

В общем виде система уравнений для всех М = q —1 независимых узлов, т. е. для всех узлов, кроме опорного, получит вид:

Линейные электрические цепи-

В эту систему уравнений члены с узловой проводимостью входят с положительным знаком, члены с общей проводимостью — с отрицательным. Если к какому-либо узлу не подключены источники тока, в правую часть соответствующего уравнения надо подставить нуль; если два узла не имеют общей ветви, вместо соответствующей общей проводимости надо также подставить нуль.

Таким образом, вместо системы из р уравнений по первому и второму законам Кирхгофа, по методу узловых напряжений составляется система из q — 1 уравнений только по первому закону Кирхгофа.

Так, для цепи рис. 3.18 вместо шести уравнений для шести неизвестных напряжений всех девяти ветвей по методу узловых напряжений составляется следующая система из трех уравнений (за опорный взят узел D):

Линейные электрические цепи

Решая эту систему, находят узловые напряжения, затем из выражений вида уравнений (3.7) — напряжения ветвей и из закона Ома — токи ветвей. Здесь, как и в методе контурных токов, по схеме цепи сразу может быть написан определитель системы уравнений и по нему вычислены узловые напряжения.
Уравнения, составленные методами контурных токов и узловых напряжений, аналогичны, но вместо напряжений в одних участвуют токи в других, и наоборот, а вместо сопротивлений — проводимости.

Целесообразно применять метод, дающий меньшее число уравнений; так, при р— q + 1 < q — 1, т. е. при р < 2 (q — 1), следует применить метод контурных токов, при р > 2 (q — 1) — метод узловых напряжений.

Линейные электрические цепи

Вывод метода узловых напряжений был дан в предположении, что между узлами цепи включены источники тока параллельно с приемниками (см. рис. 3.11, а). Если же заданы источники напряжения, соединенные с приемниками последовательно (см. рис. 3.11, б), можно рассматривать каждую ветвь как источник напряжения с той же э. д. с. Линейные электрические цепи, но с внутренним объединенным сопротивлением R = RB + R'.

Этот источник напряжения может быть заменен эквивалентным ему источником тока с внутренним током Линейные электрические цепии внутренней проводимостью Линейные электрические цепи.
Тогда уравнения системы для всех М = q— 1 независимых узлов получают вид, аналогичный уравнению для узла А в системе (3.8):

Линейные электрические цепи

где правая часть является алгебраической суммой произведений Линейные электрические цепи для ветвей с источниками напряжения, сходящихся в узле А.

Особенно прост метод узловых напряжений для цепи с двумя узлами (рис. 3.19, а). В этом случае один из двух узлов, например В, будет опорным, члены с общими проводимостями отсутствуют и из системы уравнений останется одно:

Линейные электрические цепи

Отсюда определяется узловое напряжение (оно же — напряжение всех ветвей)

Линейные электрические цепи

а по нему — токи ветвей.
Если выразить все внутренние токи Jk источников тока через внутренние э.д.с. Линейные электрические цепи эквивалентных источников напряжения:

Линейные электрические цепи

получится узловое напряжение для схемы рис. 3.19, б:

Линейные электрические цепи

после чего могут быть определены токи ветвей

Линейные электрические цепи

Обобщенные методы расчета линейных электрических цепей

Как было показано, все методы расчета линейных электрических цепей основаны на законах Ома и Кирхгофа и аналогичны для установившихся режимов постоянного и синусоидального тока и для переходных процессов. Они заключаются в составлении и решении системы алгебраических уравнений, связывающих напряжения, токи и сопротивления (проводимости) ветвей цепи, причем при постоянном токе это реальные величины U, I, R или G, при синусоидальном—символические (комплексные) изображения О, I, Z или Y, а при переходных режимах — операторные изображения U (р), I (р), Z (р) или Y (р). После решения системы уравнений для установившихся синусоидальных и для переходных процессов осуществляется переход от символических и операторных изображений искомых величин к их оригиналам — реальным мгновенным значениям напряжений и токов.

В сложных цепях с большим числом ветвей и узлов система уравнений содержит большое число неизвестных и ее приведение к уравнению с одним неизвестным путем исключения остальных неизвестных может оказаться весьма громоздким. Далее вкратце рассматриваются основы расчета цепей с помощью обобщенных аналитических и топологических методов решения систем таких уравнений.

Метод определителей

Этот известный из курса математики метод особенно удобен для решения системы однотипных уравнений, составляемых по методам контурных токов или узловых напряжений. Так, полученная  система уравнений для цепи с N-контурными токами, переписанная для синусоидальных токов с заменой буквенных индексов цифровыми:

Линейные электрические цепи

(Z11, Z22, ...— контурные сопротивления, Z12, ..., Z1N— общие с< противления соседних контуров), имеет однотипные решения для всех контурных токов. Например, контурный ток

Линейные электрические цепи

Здесь определитель системы

Линейные электрические цепи

аЛинейные электрические цепи — алгебраические дополнения этого определителя с вычеркнутыми строкой i и столбцом к, умноженные на Линейные электрические цепи.

Далее приводится решение этим методом системы уравнений для контурных токов цепи рис. 7.21, :

Линейные электрические цепи

Определитель системы:

Линейные электрические цепи

Алгебраические дополнения

Линейные электрические цепи

Искомые токи

Линейные электрические цепи

Матричный метод

Матричный метод, использующий матричную алгебру, позволяет получать и записывать системы уравнений электрической цепи в компактной и наглядной форме, удобной та к нее для вычислительных машин.

Далее матричный метод изложен на основе системы уравнений контурных токов (18.1). В такую систему входят три группь величин: искомые величины Линейные электрические цепи свободные члены Линейные электрические цепи и коэффициент Линейные электрические цепи при неизвестных. Индексы i и k принимают все значения от 1 до N, где N — число уравнений, поэтому число коэффициентов Линейные электрические цепи равно 2. Первый индекс соответствует номеру строки, второй — номеру столбца.

Каждую из групп искомых и свободных величин можно записать виде таблицы, называемой столбцовой матрицей, от-чаемой двойными чертами с обеих сторон или ее условным символом аиде одной буквы жирным шрифтом:

Линейные электрические цепи

Таблица коэффициентов Линейные электрические цепи должна иметь столько же строк, сколько и столбцов, т. е. является квадратной матрицей:

Линейные электрические цепи

Хотя запись матрицы Z подобна записи определителя Линейные электрические цепи, матрица является набором отдельных элементов, определитель же равен определенному числу при данных значениях его элементов.

В матричной алгебре показывается, что при умножении квадратной матрицы Z на столбцовую i с тем же числом строк каждый элемент произведения получается как сумма попарных произведений всех элементов строки i квадратной матрицы Z на соответствующие элементы столбцовой матрицы I. Следовательно,

Линейные электрические цепи

т. е. уравнения по методу контурных токов в краткой матричной форме аписи имеют вид:

Линейные электрические цепи

то уравнение решается с помощью обратной матрицы Z-1, которая, будучи умножена справа или слева на Z, дает единичную матрицу:

Линейные электрические цепи

т. е. матрицу, все диагональные элементы которой равны едини и а все остальные — нулю. В матричной алгебре доказывается, что

Линейные электрические цепи

где Линейные электрические цепи — определитель исходной матрицы, а Линейные электрические цепи — его алгебраические дополнения. Тогда

Линейные электрические цепи

т. е. для получения матрицы тока надо умножить Линейные электрические цепи по правила умножения матриц:

Линейные электрические цепи

Отсюда получаются все контурные токи путем приравнивания одноименных строк обеих матриц:

Линейные электрические цепи

Аналогичным образом решается матричное уравнение YU = J, составленное по методу узловых напряжений.

Матричный метод может быть применен и для составления, и для решения системы уравнений по законам Кирхгофа. Первые строки квадратной матрицы в зависимости от наличия токов и их знака-, входящих в уравнения по первому закону Кирхгофа, состоят из элементов, соответственно равных 0, или +1, или —1. Остальные ее строки, соответствующие уравнениям по второму закону Кирхгофа, состоят из сопротивлений — коэффициентов при токах в этих уравнениях. Умножение квадратной матрицы на столбцовую матрицу токов дает правую столбцовую матрицу свободных членов всех уравнений, т. е. систему всех уравнений по обоим законам Кирхгофа.

Например, система уравнений цепи постоянного тока рис. 3.12, полученная  по законам Кирхгофа обычным способом, в матричном методе имеет вид:

Линейные электрические цепи

ли, обозначая квадратную матрицу через А,

Линейные электрические цепи

Отсюда видно, что для определения токов ветвей нужно аналогично методу контурных токов составить обратную матрицу А-1 из определителя и алгебраических дополнений, умножить на нее столбцовую матрицу Линейные электрические цепи и приравнять одноименные строки этого произведения и столбцовой матрицы токов I.

Топологический метод

Схема электрической цепи, состоящая из узлов и ветвей, представляет собой геометрическую фигуру, свойства которой не зависят от ее геометрических размеров и вида очертаний. Поэтому топология— раздел геометрии, посвященный свойствам таких фигур, может быть использован для анализа электрических цепей непосредственно по структуре их схем.

Топологический метод расчета цепей изложен далее без вывода основных формул на примере цепи синусоидального тока с источником напряжения U, приключенным к одной паре узлов цепи. Тогда ток I любой ветви цепи может быть определен с помощью передачи

Линейные электрические цепи

Значение числителя этой дроби будет разъяснено далее. Знаменатель Линейные электрические цепи — определитель системы уравнений, связывающих напряжения и токи исследуемой цепи  — в топологическом методе вычисляется без составления этих уравнений по формуле Линейные электрические цепи Тогда

Линейные электрические цепи

где Sk — величина пути к по ветвям цепи между произвольно выбранной парой ее узлов, вдоль которого узлы данного пути встречаются не более одного раза, равная произведению проводимостей этого пути; S'k — величина пути передачи, содержащего узлы источника и ветвь искомого тока, равная произведению проводимостей ветвей пути передачи; Линейные электрические цепи — соответственно алгебраические дополнения пути и пути передачи, равные определителям цепей, остяющихся после короткого замыкания ветвей этих путей. Алгебраические дополнения равны единице, если путь содержит все узлы первоначальной схемы. При вычислении Sк и Линейные электрические цепиисточник напряжения замыкается накоротко.

Произведения, суммируемые в знаменателе и числителе выражения для Т, вычисляются, соответственно, для всех путей Sk и для всех пу-ей передачи S'k.

Далее для примера определяется передача в мостовой цепи переменно тока (рис. 18.1) от напряжения U источника, подключенного к узлам А и С, к току I4 в ветви с проводимостью Y4. Положительное нг правление этого тока совпадает с заданным направлением напряжени источника.

В этой цепи два пути передачи от узлов А и С источника к вет£» Y4. Величина первого пути передачи по ветви Y3 равна S1 =Y3Y При коротком замыкании этого пути передачи для определения алгебраического дополнения Линейные электрические цепи узлы A, D, С соединяются вместе, образу с узлом В одну ветвь, состоящую из параллельно соединенных пров( димостей Y1, Y, Y2. Следовательно,

Линейные электрические цепи

Величина второго пути передачи по ветвям Y1 и Y равна Линейные электрические цепиПри коротком замыкании этого пути все четыре узл» объединяются, а тогда алгебраическое дополнение этого пути передачи Линейные электрические цепи = 1.

Пути Sk и их алгебраические дополнения Линейные электрические цепи, определяются для пары узлов В и D. При определении S1 узлы А и С источника должны быть закорочены. Тогда соединяются параллельно ветви Y1 и Y2 и ветви Y3 и Y4. Следовательно, первый путь от узла В к узлу D, проходящий последовательно по этим двум параллельным разветвлениям, имеет величину

Линейные электрические цепи

Для определения алгебраического дополнения Линейные электрические цепи пути S1 его ветви закорачиваются, что приводит к объединению всех четырех узлов. Следовательно, Линейные электрические цепи = 1.

Линейные электрические цепи

Второй путь от узла В к узлу D проходит но ветви Y, поэтому его величина Линейные электрические цепи. При закорачивании этого пути и при закороченных узлах источника все остальные ветви оказываются соединенными параллельно. Отсюда

Линейные электрические цепи
В результате передача

Линейные электрические цепи

будучи умножена на U, дает искомый ток I4.

В рассмотренном примере цепь проста, из-за чего выгода применения топологического метода по сравнению с классическими методами расчета цепей, например методом эквивалентного источника напряжения, не ощущается. Экономия времени получается при расчете слож' ных цепей, и тем большая, чем сложнее цепь.

Из изложенного видны особенности топологического метода расчета электрических цепей:

  1. расчет ведется на основе схемы цепи, ветви которой изобрaжаются линиями, характеризуемыми проводимостями;
  2. расчет проводится по формулам для ряда величин, характеризющих топологические свойства цепи, без составления уравнений по законам Кирхгофа;
  3. метод применим только для цепей с одним источником энергии при наличии нескольких источников приходится использовать принцип наложения.

Топологический метод называется также методом ненаправленных графов.

Метод направленных графов

Направленным графом или графом сигнала называется совокупность узлов и соединяющих их ветвей, имеющих оправление, указываемое стрелкой. Граф не повторяет электрическую цепь, а представляет собой графическое изображение уравнений, связывающих величины, характеризующие данную цепь. Узел графа, к которому подключена одна уходящая ветвь, характеризуется входным сигналом — свободным членом системы уравнений (заданным напряжением или током), узел с одной входящей ветвью — выходным сигналом, т. е. искомой величиной, остальные узлы — другими неизвестными величинами, которые должны быть исключены в процессе решения задачи.

Линейные электрические цепи

Каждая ветвь характеризуется передачей, являющейся функцией коэффициентов уравнений и равной отношению сигналов выходного (по направлению ветви) узла к входному. К узлам графа может подходить и уходить по нескольку ветвей. Тогда сигнал узла равен сумме сигналов, приходящих к этому узлу, уходящие сигналы не учитываются.

В качестве первого простого примера составлен граф цепи (рис. 18.2, а) на основе символического метода и системы уравнений ю методу контурных токов. Искомым пусть будет ток I2 проходящий по сопротивлению Z2.

Уравнение для первого контура имеет вид:

Линейные электрические цепи

откуда

Линейные электрические цепи

Таким образом, первая составляющая тока Линейные электрические цепи создается сигнале Линейные электрические цепи через ветвь с передачей

Линейные электрические цепи

имеющей размерность проводимости, а вторая — сигналом I22 через ветвь с передачей

Линейные электрические цепи

являющейся безразмерной величиной. Тогда уравнение

Линейные электрические цепи

Уравнение для второго контура

где передачаЛинейные электрические цепи

изобразится графом рис. 18.2, е. Граф цепи в целом показан на рис. 18.2, г. Так как искомый ток I2 = I22, передача выходной ветви равна 1.

Линейные электрические цепи

Как пример составления графа для системы уравнений по закона Кирхгофа, рассматривается схема неравновесного моста переменног тока (рис. 18.3), В соответствии с выбранными положительными нanpaвлениями напряжения U и токов всех ветвей этой цепи, независимые равнения по первому закону Кирхгофа имеют вид:

Линейные электрические цепи

по второму закону Кирхгофа

Линейные электрические цепи

Граф, построенный по этой системе уравнений, показан на рис. 18.4. Его узлами являются сигналы: входной — напряжение U цепи и выходные — все токи. Все узлы связаны между собой ветвями. Ветви имеют направление, показанное стрелкой, к узлу тока, определяемого его уравнением. Например, для тока I — ветви имеют направление от узлов токов I3 и I1, стоящих в правой его части; коэффициенты при них Линейные электрические цепи по величине и знаку равны передачам этих ветвей.

Линейные электрические цепи

Граф неравновесного моста значительно упрощается, если его построить для системы уравнений по методу узловых напряжений. В общем случае число уравнений по этому методу меньше числа узлов на единицу . Но в схеме рис. 18.3, где за опорный принят узел С, узловое напряжение UA равно заданному напряжению источника U, поэтому, хотя мост имеет четыре узла, необходимо составить лишь два уравнения для узлов В и D:

Отсюда Линейные электрические цепи

и граф цепи получает вид, изображенный на рис. 18.5, т. е. в отличие от графа рис. 18.4 с семью узлами и двенадцатью ветвями для той же цепи имеет всего три узла и четыре ветви.

Как видно из приведенных примеров, направленный граф цепи начинается от самой цепи как по схеме, так н по числу узлов и ветвей, и зависит от метода составления изображаемых им уравнений. Иногда граф удается построить по схеме цепи без составления и преобразов. ния системы уравнений.

Граф цепи позволяет по заданному входному сигналу — напряжению (току) источника — найти выходной сигнал — ток (напряжение) приемника. Эта задача может быть решена или последовательным упрощением графа, или применением общего выражения для передачи сигнала.

При упрощении исходный граф преобразуется в эквивалентньй граф с одной ветвью, непосредственно связывающей входной и выходной узлы. Например, в графе рис. 18.2, г сначала следует устраши контур сb. Исключение из приведенной выше системы контурных токо тока I11 дает

Линейные электрические цепи

Соответствующий граф показан на рис. 18.2, д. Как видно, он содержит петлю «обратной связи» с передачей bc. Так как передача выходной ветви равна I т. е. I2 = I22, из предыдущего выражения вытекает, что

Линейные электрические цепи

т. е. петля исключается и получается простейший искомый граф (рис. 18.2, е), передача которого равна

Линейные электрические цепи

После подстановки значений а, b, с, выраженных через параметры цепи Z0, Z1, Z2, передача получает вид:

Линейные электрические цепи

Передача, умноженная на U1, дает искомый ток I2.

В специальной литературе, кроме исключения контура и петли, излагаются способы упрощения графов, имеющих более сложную конфигурацию.

Общее выражение для передачи графа, позволяющее по графу цепи и заданному входному сигналу, например напряжению U источника, непосредственно получить выходной сигнал, например ток I одной из ветвей цепи:

Линейные электрические цепи

Мэзон вывел на основании теории определителей.

Правая часть этой формулы по структуре аналогична правой части передачи топологического метода, но значение членов числителя другое. Здесь Рк — величина пути по ветвям от узла источник к узлу тока по направлению стрелок, вдоль которого отдельные узлы встречаются не более одного раза, равная произведению передач ветвей этого пути. Например, для графа рис. 18.4 величина единственного пути, соединяющего узел U с узлом Линейные электрические цепи Величины двух путей, соединяющих узел U с узлом I,

Линейные электрические цепи

Знаменатель Линейные электрические цепи выражения для G — определитель исходной системы уравнений, который может быть непосредственно по графу вычислен по формуле

Линейные электрические цепи

Здесь Линейные электрические цепи— сумма передач всех контуров графа, равных произведениям передач ветвей, обходимых по направлению стрелок; Линейные электрические цепи — сумма произведений Линейные электрические цепи двух не соприкасающихся контуров графа; Линейные электрические цепи — сумма произведений Кm, Кn и КР трех также не соприкасающихся контуров графа и т. д. Например, передачи контуров графа, показанных на рис. 18.4, равны:

Линейные электрические цепи

Контур K1 не касается контуров К3 и K4. Следовательно, определитель

Линейные электрические цепи

Определитель Линейные электрические цепи части графа, не касающегося k-го пути, вычисляется по формуле, аналогичной Линейные электрические цепи, но с учетом только тех контуров, которые не касаются k-vo пути. Например, для графа рис. 18.4 путь P1 касается контуров K1 и К5, поэтому

Линейные электрические цепи

Так как пути Линейные электрические цепи касаются всех контуров, Линейные электрические цепи.

Произведения Линейные электрические цепи, суммируемые в числителе выражения для передачи графа G, вычисляются для всех путей искомой передачи. Выше в виде примеров были вычислены все величины, входящие в формулу Мэзона для передачи графа Линейные электрические цепи- от узла источника U к узлу I4 и для передачи Линейные электрические цепи. Следовательно, ток ветви Z4 моста

Линейные электрические цепи

после подстановки значений Линейные электрические цепи

Линейные электрические цепи

Можно показать, что этот результат совпадает с решением той же задачи  топологическим методом. Ток диагонали Z моста

Линейные электрические цепи

Для получения окончательного результата в это выражение надo также подставить вычисленные значения входящих в него величин. Эта задача может быть решена также применением формулы Мэзона для графа рис. 18.5 системы уравнений, составленной для этой цепи по методу узловых напряжений.

Величины двух путей от узла источника UD к узлу напряжения доопределяющего искомый ток I4 равны

Линейные электрические цепи

Так как оба пути касаются обоих контуров графа, Линейные электрические цепи

Передача единственного контура, обходимого по направлению стрелок,

Линейные электрические цепи

Следовательно, определитель

Линейные электрические цепи

Тогда по формуле Мэзона передача

Линейные электрические цепи

Передача, умноженная на U, дает напряжение UD. которое после очевидного упрощения и умножения на Y4 определяет искомый ток

Линейные электрические цепи

также совпадающий с решением этой задачитопологическим методом. При этом вычисления по формуле Мэзона оказались более простыми, чем для графа рис. 18.4, составленного на основе системы уравнений по законам Кирхгофа.

Из изложенного видны особенности метода графов для расчета электрических цепей:

  1. Граф строится по системе уравнений, связывающих напряжения и токи цепи или непосредственно по схеме цепи. Он состоит из узлов заданных и искомых напряжений и токов, связи между которыми изображаются ветвями, характеризуемыми соотношениями сопротивлений (проводимостей) ветвей цепи.
  2. Вид графа для данной цепи отличается для разных методов составления уравнений; граф обычно упрощается при применении метода узловых напряжений.
  3. Расчет цепи проводится по формулам для ряда величин, характеризующих схему графа.

Рассмотренные примеры расчета простых цепей не смогли показать преимущества применения метода направленных графов по сравнению классическими методами. Экономия времени получается при расчете южных цепей, и тем большая, чем сложнее цепь.

Расчет линейных электрических цепей постоянного тока

Режимы работы источников:

Электрическая цепь, содержащая только линейные элементы, называется линейной. Элемент цепи, сопротивление которого остается постоянным при любых значениях и направлениях тока и нем и напряжении на его выводах, называется линейным.

Рассмотрим неразветвленную линейную электрическую цепь с несколькими источниками энергии (рис. 3.1а).

Величина тока в неразветвленной электрической цепи с несколькими источниками (рис. 3.1) определяется отношением алгебраической суммы ЭДС всех источников к полному сопротивлению цепи

Линейные электрические цепи

Для определения знаков ЭДС в алгебраической сумме условно задаются направлением обхода контура: по часовой или против часовой стрелки. ЭДС источника, направление которой совпадает с выбранным направлением обхода, учитывают со знаком «плюс».
Линейные электрические цепи

а ЭДС источника, направление которой не совпадает с выбранным направлением обхода, — со знаком «минус». Например (рис. 3.1а) направление обхода выбрано по часовой стрелке, тогда

Линейные электрические цепи

Если в результате расчета величина тока получится со знаком «плюс», то его направление совпадает с выбранным направлением обхода, если же со знаком «минус», то направление тока цепи противоположно выбранному направлению обхода.

Определив, таким образом, величину и направление тока в (Цепи, можно заключить, что направление ЭДС источников не всегда совпадает с направлением тока.

Источники, ЭДС которых совпадают с направлением тока, работают в режиме генератора, а источники, ЭДС которых не совпадает с направлением тока, работают в режиме потребителя.

Если, допустим, в результате расчета цепи (рис. 3.1а) окажется, что ток совпадает с выбранным направлением обхода (по часовой стрелке), то источники с ЭДС Линейные электрические цепи будут работать в режиме генераторов, а Линейные электрические цепи — в режиме потребителей.

Напряжение на каждом участке электрической цепи определяется отношением мощности, затраченной на этом участке, деленной на ток, проходящий по этому участку, т. е.

Линейные электрические цепи

Ток на всех участках неразветвленной цепи имеет одинаковое значение I.

Напряжение на сопротивлении Линейные электрические цепи можно определить отношением

Линейные электрические цепи

На участке Линейные электрические цепи т. е. на клеммах источника Линейные электрические цепи работающего в режиме потребителя, мощность Линейные электрические цепи затрачивается на преодоление мощности источника Линейные электрические цепи и на потери на внутреннем сопротивлении источника Линейные электрические цепи откуда следует

Линейные электрические цепи

Тогда напряжение Линейные электрические цепи на клеммах источника, работающего в режиме потребителя, равно

Линейные электрические цепи

Таким образом, напряжение на зажимах источника, работающего в режиме потребителя, больше, чем ЭДС самого источника на величину падения напряжения на внутреннем сопротивлении этого источника:

Линейные электрические цепи

А напряжение на клеммах источника, работающего в режиме генератора (2.12), меньше, чем ЭДС источника на величину падения напряжения на внутреннем сопротивлении:

Линейные электрические цепи

Следовательно, напряжение на любом участке цепи (рис. 3.1а) может быть определено выражением

Линейные электрические цепи

где U — напряжение на участке между точкой с положительным потенциалом Линейные электрические цепи и точкой с отрицательным потенциалом Линейные электрические цепи а R — полное сопротивление участка.

В формуле (3.4) знак «плюс» ставят для участка, на котором источник работает в режиме потребителя, а знак «минус» для участка, на котором источник работает в режиме генератора.

Пример №1

Определить величину тока Линейные электрические цепи и напряжения на участках Линейные электрические цепиЛинейные электрические цепи цепи (рис. 3.16), если известно:

Линейные электрические цепи

Проверить баланс напряжений.

Решение

Выберем направление обхода по часовой стрелке. Тогда

Линейные электрические цепи

Так как значение тока получили со знаком «минус», то его направление противоположно выбранному направлению обхода, т.е. ток в цепи Линейные электрические цепи(рис. 3.16) направлен против часовой стрелки. (В дальнейшем знак «минус» не учитывается.) На участке АВ источник работает в режиме потребителя, на участке ВС — в режиме генератора, на участке Линейные электрические цепи — в режиме потребителя и на участке Линейные электрические цепи — в режиме генератора. Таким образом

Линейные электрические цепи

Линейные электрические цепи

Баланс напряжений в замкнутой неразветвленной цепи соблюдается:

Линейные электрические цепи

Потенциальная диаграмма

При изучении и расчете некоторых электрических цепей необходимо определить потенциалы отдельных точек цепи и построить потенциальную диаграмму. Для этого можно использовать выражение (3.4) (рис. 3.1а).

На участке АВ точка В имеет положительный потенциал Линейные электрические цепи а точка А — отрицательный потенциал Линейные электрические цепи поэтому Линейные электрические цепиЛинейные электрические цепитак как источник работает в режиме генератора, т. е.

Линейные электрические цепи

На участке ВС точка В имеет положительный потенциал Линейные электрические цепи а точка С — отрицательный Линейные электрические цепи поэтому Линейные электрические цепиЛинейные электрические цепи источник с ЭДС Линейные электрические цепи работает в режиме потребителя, т. е.

Линейные электрические цепи

Таким образом, потенциал точки D можно записать

Линейные электрические цепи

если обходить цепь по направлению тока, или

Линейные электрические цепи

если обходить цепь против направления тока.

Отсюда можно сделать следующий вывод (правило): если обходить цепь или участок цепи по направлению тока, то потенциал в jКаждой точке определяется потенциалом предыдущей точки плюс. ЭДС источника, работающего в режиме генератора, минус ЭДС источника, работающего в режиме потребителя, и минус падение напряжения на участке между точками цепи.

При обходе контура против направления тока знаки ЭДС и падения напряжения изменяются на противоположные.

Это правило особенно удобно применять в тех случаях, когда в цепи имеются участки с несколькими источниками.

Потенциальная диаграмма представляет собой график зависимости потенциалов точек цепи от величины сопротивлений участков между этими точками.

Для построения потенциальной диаграммы одну из точек электрической цепи условно заземляют (потенциал ее принимают равным нулю), а потенциалы остальных точек равны напряжении, между ними и заземленной точкой.

Потенциальная диаграмма представляет собой ломаную линию (рис. 3.3).

Пример №2

Для цепи, изображенной на рис. 3.2, дано:

Линейные электрические цепи

Линейные электрические цепи

1. Определить величину и направление тока в цепи.

2. Определить потенциал точек В, С, D, Е, G, приняв потенциал точки А равным нулю, Линейные электрические цепи

3. Построить потенциальную диаграмму.

4. Составить и проверить баланс мощностей для цепи.

Решение

1. Выбираем направление обхода контура по часовой стрелке, тогда величина тока

Линейные электрические цепи

Знак «минус», полученный в результате вычислений, указывает на то что ток направлен против выбранного направления обхода как показано на рис. 3.2. В дальнейших расчетах знак «минус» не учитывается. Таким образом, источник ЭДС Линейные электрические цепи работает в режиме генератора, а Линейные электрические цепи— потребителей.

2. Для определения потенциалов указанных точек обходим контур по направлению тока. При этом получаем

Линейные электрические цепи

3. Для построения потенциальной диаграммы по оси ординат в масштабе откладываются потенциалы точек, а по оси абсцисс — сопротивления участков. Потенциальная диаграмма изображена на рис. 3.3.

Линейные электрические цепи

4. Баланс мощностей в электрической цепи с несколькими источниками соблюдается при условиями, что сумма мощностей источников, работающих в режиме генераторов, равна сумме мощностей источников, работающих в режиме потребителей, и потерям мощностей на всех сопротивлениях цепи, включая внутренние сопротивления источников:

Линейные электрические цепи

Законы Кирхгофа

В схемах электрических цепей можно выделить характерные элементы: ветвь, узел, контур.

Ветвью электрической цепи называется ее участок, на всем прошении которого величина тока имеет одинаковое значение. Узлом электрической цепи (узловой точкой) называется место единения электрических ветвей. В узловой точке сходятся как минимум три ветви (проводника).

Контуром электрической цепи называют замкнутое соединение, которое могут входить несколько ветвей (рис. 3.46).

Ветви, содержащие источник электрической энергии, называйся активными, а ветви, не содержащие источников, называются пассивными.

Первый закон Кирхгофа. В разветвленной цепи ток в различных ветвях может иметь различное значение. Сумма токов, входящих узловую точку разветвленной цепи, должна быть равна сумме токов, выходящих из этой точки.

На рис. 3.4а показана узловая точка цепи А, для которой можно записать

Линейные электрические цепи

Выражение (3.5) представляет собой первого закона (правила) Кирхгофа.

Линейные электрические цепи

Первый закон Кирхгофа формулируется так: алгебраическая сумма токов в ветвях, соединенных в один узел, равна нулю.

Токи, входящие в узел, принято считать положительными, а выходяшие из узла — отрицательными.

Второй закон Кирхгофа устанавливает зависимость между ЭДС и падением напряжения в замкнутом контуре любой электрической цепи.

Точки А, В, С и D являются узловыми точками (рис. 3.46), поскольку в каждой из них сходятся четыре проводника.

Определим потенциал каждой узловой точки, воспользовавшись выражением (3.4).

Линейные электрические цепи

Сумма потенциалов всех узловых точек замкнутого контура равна

Линейные электрические цепи

Сократив все потенциалы замкнутого контура, слева и справа от знака равенства, и перенеся все ЭДС замкнутого контура налево от знака равенства, а падения напряжения оставив справа, можно записать

Линейные электрические цепи

что и является вторым законом Кирхгофа, который формулируется так:

Алгебраическая сумма ЭДС в замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на всех участках этой цепи
(обход по току); (обход по току); (обход против тока); (обход против тока).

Линейные электрические цепи

Выражение (3.6) представляет собой математическую запись второго закона (правила) Кирхгофа.

Для определения знаков в алгебраической сумме направление обхода контура выбирается произвольно: по часовой или против часовой стрелки.

ЭДС источника, совпадающая с выбранным направлением обхода контура, считается положительной, а не совпадающая — отрицательной.

Падение напряжения на сопротивлении R считается положительным, если ток, протекающий через него, совпадает с выбранным направлением обхода контура, или отрицательным — если не совпадает.

Для электрической цепи, изображенной на рис. 3.46, второй закон Кирхгофа записывается так:

Линейные электрические цепи

Направление обхода контура в приведенном расчете выбрано по часовой стрелке.

Последовательное соединение потребителей

Последовательным соединением участков электрической цепи называют соединение, при котором через все участки цепи проходит один и тот же ток (рис. 3.5). 

Линейные электрические цепи

Напряжение на каждом последовательно включенном участке пропорционально величине сопротивления этого участка.

При последовательном соединении потребителей с сопротивлениями Линейные электрические цепиЛинейные электрические цепи и Линейные электрические цепи (рис. 3.5) напряжение на их замах равно

Линейные электрические цепи

Воспользовавшись вторым законом Кирхгофа для рассматривали цепи (рис. 3.5), можно записать

Линейные электрические цепи

или

Линейные электрические цепи

Откуда Линейные электрические цепи               (3.8)

Таким образом, общее (эквивалентное) сопротивление R последовательно включенных сопротивлений (потребителей) равно сумме этих сопротивлений.

Ток в цепи последовательно включенных потребителей (рис. 3.5) определяется выражением

Линейные электрические цепи

Нетрудно понять, что при изменении сопротивления хотя бы одного потребителя изменяется ток цепи, а следовательно, и режим работы (напряжение) всех последовательно включенных потребителей.

Поэтому последовательное соединение сопротивлений не нашло широкого практического применения.

Следует заметить, что при последовательном соединении резисторов на большем сопротивлении тратится большая мощность

Линейные электрические цепи
 

Потенциометр

Распределение напряжений, пропорциональное сопротивлениям последовательно соединенных резисторов, используется в работе потенциометра (делителя напряжения). В качестве потенциометра можно использовать реостат с подвижным контактом, включенным как показано на рис. 3.6.

Линейные электрические цепи

Изменяя сопротивление реостата, можно плавно изменять напряжение Линейные электрические цепи получаемое на потребителе: от величины входного напряжения Линейные электрические цепи подведенного к клеммам Линейные электрические цепи (движок реостата в точке А), до нуля (движок реостата в точке В). Потребитель подключается к клеммам Линейные электрические цепи

Делитель напряжения может состоять из нескольких резисторов с постоянными сопротивлениями, соединенными последовательно. Напряжение при этом можно снимать с каждого резистора или группы резисторов.
 

Потеря напряжения в проводах

Линейные электрические цепи

В линиях электропередачи (ЛЭП) электрической энергии соединительные провода включаются последовательно с потребителем (рис. 3.7а).

Так как провода обладают сопротивлением Линейные электрические цепи (двухпроводная линия), то при прохождении по ним тока происходит потеря напряжения на них. За счет этой потери напряжение в конце линии электропередачи Линейные электрические цепи меньше, чем напряжение Линейные электрические цепи в начале. Величина потери напряжения в проводах:

Линейные электрические цепи

Из (3.9) следует, что потеря напряжения в проводах зависит от тока потребителя (нагрузки) I и составления проводов Линейные электрические цепи

Для того чтобы увеличение тока линии не приводило к значительной потере напряжения и к уменьшению напряжения на потребителе Линейные электрические цепи расчет течений проводов ЛЭП производят с учетом допустимой потери напряжения

Линейные электрические цепи

Допустимая потеря напряжения в многокилометровых ЛЭП не должна превышать 10%.

Расчет сечения проводов (двухпроводной линии) по допустимой потере напряжения производят по следующему выражению:

Линейные электрические цепи

Где: S — сечение проводов ЛЭП, Линейные электрические цепи р — удельное сопротивление атериала провода, Линейные электрические цепи — длина ЛЭП, м; Линейные электрические цепи — мощность потребителя, Вт; Линейные электрические цепи — напряжение на потребителе, В.

Выбранное по допустимым потерям напряжения сечение проводов ЛЭП должно быть проверено по допустимому току (Приложение 11).

Из (3.10) видно, что сечение проводов зависит от напряжения а потребителе Линейные электрические цепи Поскольку эта зависимость квадратичная, то уменьшения сечения проводов рационально увеличивать напряжение ЛЭП. В настоящее время напряжение ЛЭП переменного тока достигает 1150 кВ, а постоянного тока 1500 кВ.

Выражение (3.10) справедливо для ЛЭП с нагрузкой в конце линии (рис. 3.7а).

Если же нагрузка распределена вдоль линии (рис. 3.76), то сечение проводов определяется выражением

Линейные электрические цепи

КПД линии электропередачи в процентах определяется выражением

Линейные электрические цепи

где Линейные электрические цепи — мощность потребителя; Линейные электрические цепи— мощность источника.

Как следует из (3.11), чем больше потеря напряжения Линейные электрические цепи в про водах, тем меньше КПД линии электропередачи. КПД длинных линий электропередачи лежит в пределах (90—98) %.
 

Параллельное соединение потребителей

Параллельным соединением участков электрической цепи называют соединение, при котором все участки цепи присоединяются к одной паре узлов, т. е. находятся под действием одного и того же напряжения (рис. 3.8). Токи параллельно включенных участков обратно пропорциональны сопротивлениям этих участков.

Линейные электрические цепи

При параллельном соединении сопротивлений Линейные электрические цепи токи потребителей соответственно равны

Линейные электрические цепи

Воспользовавшись первым законом Кирхгофа, можно определить ток I в неразветвленной части цепи

Линейные электрические цепи

Тогда
Линейные электрические цепи
Таким образом, обратная величина общего (эквивалентного) сопротивления R параллельно включенных потребителей равна сумме обратных величин сопротивлений этих потребителей.

Величина, обратная сопротивлению, определяет проводимость потребителя g. Тогда общая (эквивалентная) проводимость цепи и параллельном соединении потребителей определяется суммой проводимостей потребителей
Линейные электрические цепи
Если параллельно включены Линейные электрические цепи одинаковых потребителей с составлением Линейные электрические цепи каждый, то эквивалентное сопротивление этих потребителей Линейные электрические цепи Если параллельно включены два потребителя с сопротивлениями Линейные электрические цепи то их общее (эквивалентное) сопротивление в соответствии с (3.12) равно

Линейные электрические цепи

откудаЛинейные электрические цепи

Если параллельно включены три потребителя с сопротивления Линейные электрические цепи то общее их сопротивление (см. (3.12))Линейные электрические цепи

откуда

Линейные электрические цепи
Изменение сопротивления какого-либо из параллельно соединенных потребителей не влияет на режим работы (напряжение) других потребителей, включая изменяемое. Поэтому параллельное соединение нашло широкое практическое применение.

При параллельном соединении потребителей на большем сопротивлении тратится меньшая мощность:

Линейные электрические цепи

Анализ линейных электрических цепей с постоянными параметрами при гармоническом воздействии

Общие представления о методах формирования уравнений электрического равновесия сложных цепей:

До сих пор рассматривались только простейшие, одноконтурные и двухузловые цепи, а также цепи, которые приводятся к простейшим с помощью элементарных преобразований. Для анализа таких цепей использовалась основная система уравнений электрического равновесия, включающая в себя Линейные электрические цепи компонентных и р топологических уравнений, составленных на основании законов Кирхгофа. С помощью основной системы уравнений электрического равновесия, в принципе, можно производить анализ и сложных цепей, однако с ростом числа ветвей цепи анализ усложняется, так как для определения токов и напряжений цепи, содержащей р ветвей, приходится решать систему из Линейные электрические цепи уравнений. Число одновременно решаемых уравнений может быть уменьшено, если учесть, что не все Линейные электрические цепи неизвестных токов и напряжений ветвей являются независимыми.

Для каждой электрической цепи можно выделить совокупность независимых токов и (или) напряжений ветвей, зная которые, можно определить все остальные (зависимые) токи и напряжения. Значения независимых токов и напряжений находят путем решения сокращенной системы уравнений электрического равновесия, содержащей меньшее, чем Линейные электрические цепи, число уравнений. В связи с тем что выбор независимых токов и напряжений неоднозначен, а число независимых токов и напряжений определяется тем, какие именно величины выбраны в качестве независимых, трудоемкость анализа цепи определяется рациональностью выбора системы независимых токов и напряжений.

Методы, основанные на непосредственном применении законов Кирхгофа

К методам формирования уравнений электрического равновесия цепей, основанным на непосредственном применении законов Кирхгофа, относятся метод токов ветвей и метод напряжений ветвей. В методе токов ветвей в качестве независимых переменных, относительно которых составляется сокращенная система уравнений электрического равновесия, используют токи ветвей исследуемой цепи. Этот метод основан на том, что ток и напряжение каждой ветви, за исключением ветвей, содержащих идеализированные источники тока, а также ветвей, составленных только из идеализированных источников напряжения, связаны между собой однозначной зависимостью, которая определяется компонентным, уравнением. данной ветви. Таким образом, зная токи всех ветвей электрической цепи, можно определить напряжения этих ветвей.

Пусть линейная электрическая цепь состоит только из идеализированных двухполюсных пассивных элементов: сопротивлений, емкостей, индуктивностей, а также неуправляемых источников напряжения. Основная система уравнений электрического равновесия такой цепи будет содержать q — 1 уравнений баланса токов, р — q + 1 уравнений баланса напряжений и Линейные электрические цепи компонентных уравнений для определения р неизвестных токов и Линейные электрические цепи неизвестных напряжений ветвей (напряжения Линейные электрические цепи ветвей, состоящих только из источников напряжения, заданы). Если каким-либо образом определить токи всех ветвей, то неизвестные напряжения могут быть найдены с помощью Линейные электрические цепи компонентных уравнений. Для определения р неизвестных токов ветвей можно воспользоваться q — 1 уравнениями баланса токов и р — q + 1 уравнениями баланса напряжений, выразив в последних напряжения ветвей через соответствующие токи.

Таким образом, для цепи, не содержащей источников тока, применение метода тока ветвей позволяет уменьшить число уравнений, входящих в систему уравнений электрического равновесия от Линейные электрические цепи до р.

Пример №3

Составим систему уравнений электрического равновесия по методу токов ветвей для электрической цепи, схема которой приведена на рис. 4.1, а. Граф этой цепи, соответствующий сокращенному топологическому описанию, изображен на рис. 4.1, б. Как видно из рисунка, для данного топологического описания число ветвей р = 6, число узлов q = 4, причем ни одна из ветвей не содержит источников тока Линейные электрические цепи и не составлена только из источников напряжения Линейные электрические цепи Выбирая дерево графа и систему независимых контуров в соответствии с рис. 4.1, в — д, составим основную систему уравнений электрического равновесия, которая будет включать в себя 12 уравнений, в том числе q — 1 = 3 уравнений баланса токов:

Линейные электрические цепи

р - q + 1 = 3 уравнения баланса напряжений:

Линейные электрические цепи

и р = 6 компонентных уравнений

Линейные электрические цепи

Подставляя уравнения (4.3) в (4.2), получим в сочетании с уравнениями (4.1) сокращенную систему уравнений электрического равновесия рассматриваемой цепи

Линейные электрические цепи

Таким образом, число одновременно решаемых уравнений уменьшилось от 12 до 6.

Рассмотрим более общий случай, когда исследуемая цепь помимо указанных ранее элементов включает в себя Линейные электрические цепи ветвей, содержащих неуправляемые источники тока (ток этих ветвей задан, а напряжение неизвестно).

Линейные электрические цепи

Выберем дерево графа цепи таким образом, чтобы ветви, содержащие источники тока, не входили бы в число ветвей дерева, т. е. являлись бы главными ветвями. Тогда напряжения этих ветвей будут фигурировать только в Линейные электрические цепи уравнениях баланса напряжений, составленных для главных контуров, замыкаемых ветвями, содержащими источники тока. Выражая в остальных Линейные электрические цепи уравнениях, составленных на основании второго закона Кирхгофа, напряжения ветвей через токи этих же ветвей, получим в сочетании с q — 1 уравнениями, составленными на основании первого закона Кирхгофа, Линейные электрические цепи уравнений для определения Линейные электрические цепи неизвестных токов ветвей.

Пример №4

Используя метод токов ветвей, составим систему уравнений электрического равновесия цепи, эквивалентная схема которой для мгновенных значений приведена на рис. 1.39, а комплексная схема замещения — на рис. 4.2, а.

Как было показано в примере 1.7, основная система уравнений электрического равновесия этой цепи включает в себя 4 компонентных уравнения и 6 уравнений, составленных на основании законов Кирхгофа. Если дерево графа выбрано таким образом, что ветвь, содержащая источник тока, вошла в число главных ветвей (рис. 4.2, б), то напряжение этой ветви будет фигурировать только в одном уравнении, составленном на основании второго закона Кирхгофа.

Линейные электрические цепи

Это уравнение, после нахождения токов всех ветвей, можно использовать для определения неизвестного напряжения на источнике тока. Выражая в оставшихся уравнениях напряжения всех ветвей через соответствующие токи, получим систему уравнений для определения пяти неизвестных токов ветвей:

Линейные электрические цепи

Далее будет показано, что число ветвей цепи, токи которых могут быть заданы независимо, не может превышать числа главных контуров цепи р — q + 1. Когда Линейные электрические цепи число неизвестных токов ветвей будет равно q — 1 и они могут быть определены из q — 1 уравнения баланса токов.

В связи с тем что напряжения на связанных индуктивностях выражаются через токи этих индуктивностей, метод токов ветвей может быть применен и для составления уравнений электрического равновесия цепей со связанными индуктивностями (см. пример 2.13).

Дуальным по отношению к методу токов ветвей является метод напряжений ветвей. При составлении системы уравнений электрического равновесия цепи с помощью этого метода в качестве независимых переменных используют неизвестные напряжения Линейные электрические цепи ветвей. Система уравнений электрического равновесия в этом случае включает в себя р — q +1 уравнений баланса напряжений и Линейные электрические цепи уравнений баланса токов, причем неизвестные токи всех ветвей, входящие в эти уравнения, должны быть выражены через напряжения этих же ветвей. Число ветвей, напряжения которых могут быть заданы независимо, не может превышать числа независимых узлов q— 1. Когда число ветвей, составленных только из независимых источников напряжения, равно числу независимых узлов Линейные электрические цепи число неизвестных напряжений ветвей равно числу независимых контуров р — q + 1 и они могут быть определены из р — q + 1 уравнений баланса напряжений.

Метод напряжений ветвей в общем случае нельзя использовать для формирования уравнений электрического равновесия цепей со связанными индуктивностями. Это связано с тем, что токи таких индуктивностей могут быть выражены через соответствующие напряжения только при коэффициенте связи между индуктивностями, меныием единицы. Это следует из соотношений, полученных для токов связанных индуктивностей, выраженных через напряжения с использованием (2.165):

Линейные электрические цепи

Полученные выражения имеют смысл только при Линейные электрические цепи т. е. при Линейные электрические цепи Таким образом, метод напряжений ветвей является менее общим, чем метод токов ветвей.

Итак, методы формирования уравнений электрического равновесия цепи, основанные на непосредственном применении законов Кирхгофа, позволяют уменьшить число одновременно решаемых уравнений от Линейные электрические цепи до Линейные электрические цепиили Линейные электрические цепи

Метод контурных токов

Метод контурных токов основан на важной топологической особенности электрических цепей, вытекающей из первого закона Кирхгофа и заключающейся в том, что токи всех ветвей цепи могут быть выражены через токи главных ветвей. Для определения токов главных ветвей (контурных токов) составляют систему из Линейные электрические цепи уравнений, называемых контурными уравнениями. Рассмотрим методику формирования контурных уравнений на примере простой цепи, не содержащей источников тока, схема которой приведена на рис. 4.1, а. Выбирая произвольно дерево графа этой цепи, убеждаемся, что токи ветвей дерева однозначно выражаются через токи главных ветвей. В частности, используя дерево графа и соответствующую ему систему контуров, изображенных на рис. 4.1, в—д, находим на основании первого закона Кирхгофа, что токи ветвей дерева Линейные электрические цепи могут быть выражены через токи главных ветвей Линейные электрические цепи

Линейные электрические цепи

Таким образом, если каким-либо образом определить токи главных ветвей, то далее, используя соотношения (4.5), можно найти токи остальных ветвей цепи, а затем найти неизвестные напряжения ветвей. Следовательно, для полного описания процессов в цепи достаточно определить только токи главных ветвей исследуемой цепи. Из соотношения (4.5) также следует, что максимальное количество токов ветвей, которые могут быть заданы независимо, не может превышать числа главных ветвей.

Для определения токов главных ветвей цепи (см. рис. 4.1) воспользуемся уравнениями, составленными на основании второго закона Кирхгофа, выразив входящие в них напряжения ветвей через токи главных ветвей. Подставляя (4.3), (4.5) в уравнение (4.2), получаем

Линейные электрические цепи

Разумеется, решить контурные уравнения (4.6), легче, чем основную систему уравнений электрического равновесия цепи (4.1)—(4.3) или систему уравнений (4.4).

На практике контурные уравнения формируют с помощью простого алгоритма, не прибегая к составлению основной системы уравнений электрического равновесия, поэтому применение этого метода позволяет упростить и составление, и решение уравнений электрического равновесия цепи. Для того чтобы сформулировать правила составления контурных уравнений, введем ряд новых понятий.

Собственным сопротивлением Линейные электрические цепи контура назовем сумму сопротивлений всех ветвей, входящих в этот контур. В цепи (см. рис. 4.1, а) выделено три независимых контура (см. рис. 4.1, в— д); их собственные сопротивления

Линейные электрические цепи

В каждом из уравнений (4.6) имеется член, равный произведению собственного сопротивления i-гo контура на ток главной ветви, входящей в данный контур. Этот член можно рассматривать как падение напряжения на собственном сопротивлении i-гo контура, вызванное током главной ветви, если бы он протекал через все ветви, входящие в данный контур, т. е. замыкался бы в i-м контуре. Такой ток называется контурным током. Таким образом, контурный ток i-гo контура Линейные электрические цепи равен току главной ветви, входящей в данный контур. Направление контурного тока во всех элементах контура совпадает с направлением его обхода, т. е. с направлением соответствующей главной ветви. Для цепи, схема которой представлена на рис. 4.1, имеем

Линейные электрические цепи

Как следует из (4.5) и (4.8), токи всех ветвей цепи могут быть выражены через контурные токи этой цепи.

Взаимным, или общим, сопротивлением i-гo и j-го контуров называется сопротивление Линейные электрические цепи равное сумме сопротивлений ветвей, общих для этих контуров. Взаимное сопротивление Линейные электрические цепи берется со знаком плюс, если контурные токи рассматриваемых контуров протекают через общие для этих контуров ветви в одинаковом направлении; если контурные токи в общих ветвях имеют противоположные направления, то взаимное сопротивление берут со знаком минус. Если рассматриваемые контуры не имеют общих ветвей, то их взаимное сопротивление равно нулю. Взаимные сопротивления контуров цепи (см. рис. 4.1)

Линейные электрические цепи

Контурной э. д. сЛинейные электрические цепи i-гo контура называется алгебраическая сумма э. д. с. всех идеализированных источников напряжения, входящих в данный контур. Если направление э. д. с. какого-либо источника, входящего в i-й контур, совпадает с направлением контурного тока этого контура, то соответствующая э. д.с. входит в Линейные электрические цепи со знаком плюс, в противном случае— со знаком минус. Контурные э. д. с. рассматриваемой цепи

Линейные электрические цепи

Используя обозначения (4.7)—(4.10), представим контурные уравнения (4.6) в канонической форме записи:

Линейные электрические цепи

Анализируя (4.11), нетрудно установить, что все контурные уравнения имеют одинаковую структуру; левая часть контурного уравнения есть сумма членов, один из которых равен произведению контурного тока соответствующего контура на собственное сопротивление этого контура, а остальные — произведениям контурных токов других контуров на взаимные сопротивления этого контура и других контуров; правая часть контурного уравнения содержит только один член — контурную э.д.с. рассматриваемого контура.

Полученные результаты могут быть обобщены на случай произвольюй линейной цепи, составленной из сопротивлений, емкостей, индуктивностей и независимых источников напряжения:

Линейные электрические цепи

где n = р — q + 1 — число независимых контуров цепи. Итак, зная труктуру контурного уравнения, нетрудно сформировать систему онтурных уравнений любой цепи, не прибегая к составлению основой системы уравнений электрического равновесия.

Используя матричную форму, уравнения (4.12) можно переписать

Линейные электрические цепи

Здесь

Линейные электрические цепи

матрица контурных сопротивлений;

Линейные электрические цепи

матрицы-столбцы контурных токов и контурных э. д. с.

Для линейных цепей, составленных только из сопротивлений, емкостей, индуктивностей и независимых источников напряжения, матрица контурных сопротивлений квадратная, причем вследствие того, что для таких цепей всегда выполняется условие Линейные электрические цепи матрица Линейные электрические цепи симметрична относительно главной диагонали.

Решая систему уравнений (4.13) любым из методов, можно найти все неизвестные контурные токи цепи. Например, используя формулы Крамера, запишем выражение для контурного тока k-гo контура

Линейные электрические цепи

где Линейные электрические цепи — определитель системы уравнений (4.13); Линейные электрические цепи— алгебраическое дополнение элемента Линейные электрические цепи этого определителя. В аналогичной форме могут быть записаны выражения для контурных токов всех остальных контуров. Следует отметить, что формулы Крамера, позволяющие получить в явной форме аналитические выражения для контурных токов, нашли применение лишь при теоретическом исследовании свойств электрических цепей. Вычисление значений контурных токов при n > 3 с помощью формулы Крамера является весьма трудоемким. Поэтому на практике обычно используют более экономичные методы, такие, например, как метод исключения Гаусса или LU-пpeобразование [4, 5]

 Если электрическая цепь помимо сопротивлений, емкостей, индуктивностей и независимых источников напряжения содержит также независимые источники тока, то последние с помощью рассмотренных в § 2.6 преобразований можно заменить независимыми источниками напряжения. Однако систему контурных уравнений такой цепи можно составить и не прибегая к преобразованию источников.

Пусть в состав исследуемой цепи входит Линейные электрические цепи ветвей, включающих независимые источники тока. Выберем дерево цепи таким образом, Чтобы ветви с источниками тока вошли в состав главных ветвей. Очевидно, что контурные токи контуров, которые замыкаются главными ветвями, содержащими источники тока, равны токам соответствующих независимых источников. Эти токи заданы и не требуют определения. Таким образом, число неизвестных контурных токов меньше числа независимых контуров Линейные электрические цепи на Линейные электрические цепи Для определения неизвестных контурных токов необходимо составить систему из р —Линейные электрические цепи контурных уравнений для контуров, не содержащих ветвей с источниками тока. Контурные уравнения такой цепи могут быть записаны в такой же форме, как и контурные уравнения цепи, не содержащей источников тока (4.12), (4.13), Однако матрица контурных сопротивлений в этом случае будет не квадратной: число столбцов будет равно числу независимых контуров Линейные электрические цепи а число строк — числу неизвестных контурных токов Линейные электрические цепи После формирования контурных уравнений в форме (4.12), (4.13) входящие в каждое уравнение члены, содержащие известные контурные токи, переносят в правую часть соответствующих уравнений.

Пример №5

Составим систему контурных уравнений для цепи, схема которой приведена на рис. 4.2, а Число ветвей этой цепи р= 6, число узлов q = 4, число ветвей, содержащих источники тока, Линейные электрические цепи=1. Выберем дерево графа цепи таким образом, чтобы ветвь с источником тока вошла в число главных ветвей Соответствующая выбранному дереву система независимых контуров изображена на рис. 4.2, б. В связи с тем что число независимых контуров цепи равно Линейные электрические цепи а число неизвестных контурных токов Линейные электрические цепиЛинейные электрические цепи система контурных уравнений имеет вид

Линейные электрические цепи

где Линейные электрические цепи — неизвестные контурные токи первого и второго контуров; Линейные электрические цепи — известный контурный ток третьего контура;

Линейные электрические цепиЛинейные электрические цепи—собственные сопротивления первого и второго контуров; Линейные электрические цепи —взаимные сопротивления контуров; Линейные электрические цепи — контурные э.д.с. первого и второго контуров.

Перенося члены, содержащие известный контурный ток, в правую часть уравнений и выражая собственные и взаимные сопротивления контуров через параметры элементов рассматриваемой цепи, получаем окончательно

Линейные электрические цепи

Таким образом, система контурных уравнений рассматриваемой цепи содержит два уравнения для определения двух неизвестных контурных токов.

Метод контурных токов можно использовать и для составления уравнений электрического равновесия цепей со связанными индуктивностями, однако алгоритм формирования матрицы контурных сопротивлений при этом усложняется. Поэтому при анализе цепей с взаимной индуктивностью целесообразно либо заменять связанные индуктивности участками цепей, не содержащими связанных индуктивностей, либо формировать уравнения электрического равновесия с помощью метода токов ветвей.

В ряде случаев при составлении контурных уравнений в качестве независимых удобно выбирать не главные контуры, а контуры, соответствующие ячейкам графа рассматриваемой цепи. Следует, однако, иметь в виду, что такой подход применим только к анализу цепей, граф которых является планарным.

Метод узловых напряжений

При составлении уравнений электрического равновесия цепи по методу напряжений ветвей в качестве независимых переменных были использованы Линейные электрические цепи неизвестных напряжений. Принимая во внимание, что напряжения ветвей связаны Линейные электрические цепи уравнениями баланса напряжений, количество независимых напряжений, относительно которых формируется система уравнений электрического равновесия цепи, может быть уменьшено до Линейные электрические цепи Если дерево графа цепй выбрано так, что ветви, содержащие только независимые источники напряжения, вошли в число ветвей дерева, то в качестве независимых переменных можно выбрать неизвестные Линейные электрические цепинапряжения ветвей дерева. Такой метод формирования сокращенной системы уравнений электрического равновесия цепи называется методом напряжений ветвей дерева. Этот метод не получил широкого распространения.

В качестве независимых переменных, относительно которых формируют уравнения электрического равновесия цепи, удобно использовать так называемые узловые напряжения, т. е. напряжения независимых узлов рассматриваемой цепи относительно базисного. Можно показать, что напряжения всех ветвей электрической цепи могут быть выражены через узловые напряжения этой цепи. Действительно, напряжение некоторой ветви, включенной между i-м и базисным узлами, равно узловому напряжению i-гo узла Линейные электрические цепи взятого со знаком плюс или минус в зависимости от направления напряжения этой ветви, а напряжение ветви, включенной между i-м и j-м узлами (рис. 4.3), — разности узловых напряжений этих узлов Линейные электрические цепи

Если исследуемая цепь не содержит независимых источников напряжения, то все q — 1 неизвестные узловые напряжения независимы. Если цепь содержит Линейные электрические цепи ветвей, составленных только из независимых

Линейные электрические цепи

источников напряжения, то узловые напряжения Линейные электрические цепи узлов могут быть выражены через Линейные электрические цепи независимых узловых напряжения, для определения которых записывают Линейные электрические цепи уравнений электрического равновесия цепи, называемых узловыми. Метод формирования уравнений электрического равновесия цепи,в котором в качестве независимых переменных используются неизвестные напряжения независимых узлов относительно базисного, называется методом узловых напряжений.

Рассмотрим метод формирования узловых уравнений на примере цепи, не содержащей источников напряжения (рис. 4.4). Рассматриваемая цепь получена из цепи, схема которой изображена на рис. 4.1, а, путем преобразования источников напряжения в источники тока и замены комплексных сопротивлений ветвей их комплексными проводимостями. Она имеет три независимых узла, для которых можно составить уравнения баланса токов

Линейные электрические цепи

Выразим неизвестные токи ветвей цепи через напряжения этих ветвей, а напряжения ветвей — через соответствующие узловые напряжения:

Линейные электрические цепи

Подставляя выражения (4.16) в (4.15), получим систему уравнений для определения трех неизвестных узловых напряжений

Линейные электрические цепи

Введем ряд новых понятий. Собственной проводимостью Линейные электрические цепи i-гo узла будем называть сумму проводимостей всей ветвей, подключенных к данному узлу. Для рассматриваемой цепи

Линейные электрические цепи

Взаимная проводимость i-го и j-гo узлов — это сумма проводимостей всех ветвей, включенных непосредственно между этими узлами, взятая с противоположным знаком. Если в цепи отсутствуют ветви, включенные непосредственно между i-м и /-м узлами, то Линейные электрические цепи Для цепи, схема которой приведена на рис. 4.4:

Линейные электрические цепи

Узловым током  Линейные электрические цепи i-гo узла называется алгебраическая сумма токов всех источников тока, подключенных к данному узлу. Если ток какого-либо источника тока направлен к i-му узлу, То он входит в Линейные электрические цепи со знаком плюс, если тко направлен от i-го узла, то он входит в Линейные электрические цепи со знаком минус. Для рассматриваемой цепи

Линейные электрические цепи

Используя обозначения (4.17)—(4.19), представим узловые уравнения исследуемой цепи в канонической форме записи

Линейные электрические цепи

Итак, левая часть любого узлового уравнения, составленного для i-го независимого узла, есть сумма членов, один из которых равен произведению узлового напряжения i-гo узла на его собственную проводимость, а остальные — произведениям узловых напряжений других независимых узлов на взаимные проводимости i-го узла и этих узлов. Правая часть каждого уравнения равна узловому току соответствующего узла.

Таким образом, составить узловые уравнения, как и контурные, можно непосредственно по схеме электрической цепи. Написание уравнений электрического равновесия цепи по методу узловых напряжений упрощается еще за счет того, что не возникает необходимости определять систему независимых контуров и строить дерево графа.

Для линейной электрической цепи, имеющей m = q— 1 незавиcимых узлов и состоящей только из сопротивлений, емкостей, индуктивностей и независимых источников тока, система узловых уравнений может быть записана в виде

Линейные электрические цепи

или

Линейные электрические цепи

где 

Линейные электрические цепи

матрица узловых проводимостей цепи;

Линейные электрические цепи

матрицы-столбцы узловых напряжений и узловых токов.

Можно убедиться, что для цепей рассматриваемого типа всегда выполняется условие Линейные электрические цепи поэтому матрица узловых проводимостей таких цепей квадратная и симметричная относительно главной диагонали.

Решая систему узловых уравнений любым из способов, определяют все неизвестные узловые напряжения. Так, используя формулы Крамера, найдем узловое напряжение k-го узла:

Линейные электрические цепи

Здесь Линейные электрические цепи— определитель системы уравнений (4.22); Линейные электрические цепи— алгебраическое дополнение элемента Линейные электрические цепи этого определителя.

Если цепь содержит также независимые источники напряжения, то их можно либо заменить на источники тока, либо составить для цепи систему узловых уравнений без такой замены.

Пусть в рассматриваемой цепи имеется рия независимых источников напряжения. Очевидно, что узловые напряжения двух узлов, между которыми включен независимый источник напряжения, отличаются только на э. д. с. этого источника. Поэтому число независимых узловых напряжений цепи уменьшается от q— 1 до р — Линейные электрические цепи— 1, причем такие уравнения составляют только для узлов, напряжения которых выбраны в качестве независимых. Матрица узловых проводимостей цепи, содержащей независимые источники напряжения, будет не квадратной: число столбцов этой матрицы равно числу независимых узлов m = q— 1, а число строк — числу независимых узловых напряжений q—Линейные электрические цепи— 1. После формирования системы уравнений электрического равновесия цепи в виде (4.21), (4.22) члены, содержащие известные узловые напряжения, переносят в правую часть соответствующих уравнений.

В простейшем случае исследуемая цепь может содержать Линейные электрические цепи источников напряжения, имеющих общую точку. Выберем узел, к которому подключены все источники напряжения, в качестве базисного. Тогда узловые напряжения Линейные электрические цепиузлов, к которым подключены вторые полюсы источников напряжения, будут равны напряжениям этих источников, а систему узловых уравнений составляют только для узлов, к которым не подключены источники напряжения.

Пример №6

Используя метод узловых напряжений, составим уравнения электрического равновесия цепи, схема которой приведена на рис. 4.2, а. Эта цепь содержит q — 1=3 независимых узла и имеет один источник напряжения Линейные электрические цепи включенный между базисным узлом и узлом 1. Узловое напряжение этого узла Линейные электрические цепи известно и равно Линейные электрические цепи Для определения неизвестных узловых напряжений Линейные электрические цепи составляем два узловых уравнения

Линейные электрические цепи

Здесь Линейные электрические цепи — собственные проводимости узлов 2 и 3; Линейные электрические цепи — взаимные проводимости узлов рассматриваемой цепи.

Перенося члены, содержащие известное узловое напряжение Линейные электрические цепи в правую часть уравнений и выражая собственные и взаимные проводимости узлов через параметры элементов цепи, получаем

Линейные электрические цепи

Аналогичная система уравнений электрического равновесия цепи получается и в том случае, когда источник напряжения Линейные электрические цепи заменяют источником тока Линейные электрические цепиподключенным между узлом 2 и базисным (узел 1 в этом случае устраняется).

Метод узловых напряжений можно использовать и для анализа цепей с взаимной индуктивностью (при Линейные электрические цепи1), однако алгоритм формирования узловых уравнений в этом случае значительно усложняется.

Формирование уравнений электрического равновесия цепей с зависимыми источниками

При формировании уравнений электрического равновесия цепей с зависимыми источниками следует различать источники, управляемые током или напряжением какой-либо невырожденной, т. е. не содержащей источников тока и не составленной только из источников напряжения, ветви и источники, у которых управляющее воздействие не является током или напряжением какой-либо невырожденной ветви. Наличие в исследуемой цепи управляемых источников первого типа не накладывает никаких ограничений, на применение ранее рассмотренных методов формирования уравнений электрического равновесия цепи. Включение в цепь управляемых источников второго типа может существенно усложнить анализ и сделать невозможным применение тех или иных методов формирования уравнений электрического равновесия.

Рассмотрим методику формирования уравнений электрического равновесия цепей, содержащих зависимые источники, управляемые током или напряжением какой-либо невырожденной ветви. Для таких цепей источники, управляемые напряжением, можно преобразовать в источники, управляемые током, и наоборот. Пусть в исследуемой цепи имеются источники напряжения и тока, управляемые напряжением а-й ветви:

Линейные электрические цепи

где Линейные электрические цепи — коэффициенты управления источников.

Используя компонентное уравнение а-й ветви, напряжение Линейные электрические цепи в соотношениях (4.24) можно выразить через ток этой ветви Линейные электрические цепи при этом источник, управляемый напряжением, преобразуется в источник, управляемый током. В простейшем случае связь напряжения и тока а-й ветви описывается законом Ома в комплексной форме

Линейные электрические цепи

Подставляя (4.25) в (4.24), получаем

Линейные электрические цепи

Аналогичным образом можно преобразовать источники, управляемые током какой-либо ветви, в источники, управляемые напряжением этой же ветви.

При составлении основной системы уравнений электрического равновесия цепей, содержащих зависимые источники напряжения или тока рассматриваемого типа, эти источники учитывают в уравнениях, составленных на основании законов Кирхгофа, наряду с независимыми источниками, а затем токи и э. д. с. зависимых источников выражают через соответствующие управляющие воздействия. В связи с тем что управляющие воздействия представляют собой токи и напряжения ветвей цепи, в основной системе уравнений электрического равновесия цепи не появится новых неизвестных токов или напряжений. При формировании уравнений электрического равновесия цепи по методу токов ветвей токи и э. д. с. управляемых источников должны быть выражены через неизвестные токи ветвей, а при формировании таких уравнений по методу напряжений ветвей — через неизвестные напряжения ветвей.

Пример №7

Используя метод токов ветвей, составим, уравнения злектрического равновесия цепи (см. рис. 4.2, а) при условии, что ток источника тока является функцией напряжения ветви, содержащей индуктивность: Линейные электрические цепи

Задача решается в два этапа. На первом — формируют систему уравнений по методу токов ветвей, в которой ток источника j учитывается так же, как если бы это был ток независимого источника (см. пример 4.2):

Линейные электрические цепи

На втором — ток управляемого источника выражают через ток третьей ветви Линейные электрические цепи и подставляют в полученную систему уравнений:

Линейные электрические цепи

Таким образом получаем уравнения для определения пяти неизвестных токов ветвей, после решения которой и определения тока Линейные электрические цепи находят ток управляемого источника и напряжения всех ветвей.

Методом контурных токов можно построить систему уравнений электрического равновесия цепи, содержащей зависимые источники напряжения, управляемые током. Если цепь содержит зависимые источники других типов, то они должны быть преобразованы в источники напряжения, управляемые током. При составлении контурных уравнений э. д. с. таких источников учитываются наравне с э. д. с. независимых источников, а затем переносятся в левую часть уравнений и выражаются через соответствующие контурные токи. Таким образом, наличие в исследуемой цепи источников э. д. с., управляемых током, приводит к изменению коэффициентов перед некоторыми из контурных токов и может обусловить несимметричность матрицы контурных сопротивлений относительно главной диагонали.

Линейные электрические цепи

Пример №8

Составим систему контурных уравнений цепи (см. рис. 4.2) при условии, что ток источника тока является функцией напряжения на сопротивлении Линейные электрические цепи

Линейные электрические цепи

Преобразуем схему рассматриваемой цепи таким образом, чтобы управляемый напряжением источник тока был заменен на управляемый током источник напряжения (рис. 4.5, а):

Линейные электрические цепи

Выбрав систему независимых контуров (рис. 4.5, б), составим систему контурных уравнений цепи, в которой э. д. с. Линейные электрические цепи источника учтена так, как будто бы этот источник независимый:

Линейные электрические цепи

где Линейные электрические цепи

Далее перенося Линейные электрические цепи в левую часть контурных уравнений и выражая ее через контурные токи Линейные электрические цепи получаем

Линейные электрические цепи

Матрица контурных сопротивлений рассматриваемой цепи несимметрична относительно главной диагонали:

Линейные электрические цепи

Методом узловых напряжений можно составить систему уравнений электрического равновесия цепей, содержащих управляемые напряжением источники тока. Если цепь содержит зависимые источники других типов, то они должны быть заменены на источники тока, управляемые напряжением. При составлении узловых уравнений токи таких источников учитывают наравне с токами независимых источников, а затем выражают через соответствующие узловые напряжения. Наличие в рассматриваемой цепи управляемых источников, как правило, приводит к тому, что матрица узловых проводимостей цепи становится несимметричной относительно главной диагонали.

Линейные электрические цепи

Пример №9

Составим узловые уравнения цепи (см. рис. 4.2, а) при условии, что э.д.с. источника напряжения является функцией тока Линейные электрические цепи

Преобразуем схему рассматриваемой цепи таким образом, чтобы управляемый током источник э.д.с. был заменен на управляемый напряжением источник тока Линейные электрические цепи (рис. 4.6):

Линейные электрические цепи

Составляем узловые уравнения преобразованной цепи, учитывая ток управляемого источника Линейные электрические цепи наравне с током независимого источника Линейные электрические цепи

Линейные электрические цепи

Перенося ток управляемого источника Линейные электрические цепи в левую часть узловых уравнений и выражая его через узловые напряжения: Линейные электрические цепи получаем

Линейные электрические цепи

Из полученных уравнений видно, что матрица узловых проводимостей цепи несимметрична относительно главной диагонали:

Линейные электрические цепи

Рассмотрим особенности формирования уравнений электрического равновесия цепей, содержащих зависимые источники, у которых управляющее воздействие не является током или напряжением какой-либо невырожденной ветви. Для таких цепей, как правило, нельзя выполнить преобразования, связанные с изменением вида управляющего воздействия, а при составлении уравнений электрического равновесия могут появляться дополнительные неизвестные — управляющие токи или напряжения, не являющиеся токами или напряжениями ветвей.

Чтобы получить достаточное количество уравнений для определения всех неизвестных токов и напряжений, в состав рассматриваемых цепей обычно включают дополнительные вырожденные ветви, соответствующие управляющим воздействиям зависимых источников.

Линейные электрические цепи

Так, если в цепи (рис. 4.7, а) имеется источник напряжения, э. д. с. которого зависит от напряжения Линейные электрические цепи не являющегося напряжением какой-либо ветви, то для составления основной системы уравнений электрического равновесия эту цепь следует дополнить вырожденной

Линейные электрические цепи

ветвью (рис. 4.7, б), содержащей независимый источник тока Линейные электрические цепи напряжение которого равномЛинейные электрические цепи Если электрическая цепь содержит зависимый источник тока Линейные электрические цепи управляемый током Линейные электрические цепи не являющимся током какой-либо ветви (рис. 4.8, а), то для составления основной системы уравнений электрического равновесия эту цепь следует дополнить вырожденной ветвью, содержащей независимый источник напряжения Линейные электрические цепи (рис. 4.8, б), ток которого равен Линейные электрические цепи После введения дополнительных вырожденных ветвей основную систему урав нений электрического равновесия преобразованных цепей составляют по расммотренным ранее правилам.

Если в цепи имеются источники, управляемые напряжением, которые не могут быть преобразованы в источники, управляемые током, то для составления уравнений электрического равновесия такой цепи нельзя воспользоваться методами токов ветвей и контурных токов; если в цепи имеются источники, управляемые током, которые не поддаются преобразованию в источники, управляемые напряжением, то для составления уравнений электрического равновесия оказываются неприменимыми методы напряжений ветвей и узловых напряжений.

На практике для формирования уравнений электрического равновесия используют тот из методов, в котором приходится определять меньшее количество независимых переменных. При Линейные электрические цепиЛинейные электрические цепи рекомендуется применять метод узловых напряжений, в противном случае — метод контурных токов. Если количество решаемых уравнений окажется одинаковым, то предпочтение следует отдать методу узловых напряжений, в котором не требуется проведения трудоемкой (особенно для сложных, например непланарных, цепей) операции по выбору системы независимых контуров.

Использование рассмотренных методов, как правило, является целесообразным только в тех случаях, когда в результате анализа требуется определить все или значительное количество неизвестных токов или напряжений. Если надо определить реакцию цепи (ток или напряжение) только одной или небольшого количества ветвей, то упростить анализ цепи можно путем использования методов, основанных на применении важнейших теорем теории цепей (см. далее).

Основные теоремы теории цепей

Сформулированный в гл. 1 принцип наложения (суперпозиции) отражает важнейшее свойство линейных электрических цепей.

Это свойство состоит в том, что реакция таких цепей на произвольное внешнее воздействие, представляющее собой линейную комбинацию более простых воздействий, равна линейной комбинации реакций, вызванных каждым из простых воздействий в отдельности.

Из принципа наложения следует, что ток или напряжение любой ветви линейной электрической цепи, содержащей наряду с пассивными элементами зависимые и независимые источники тока и напряжения, равны сумме частичных токов или напряжений, вызванных действием каждого независимого источника в отдельности.

Пусть цепь содержит независимые источники только одного типа, например источники напряжения. Контурный ток произвольного контура этой цепи может быть определен из выражения (4.14). Представляя все входящие в это выражение контурные э. д. с. Линейные электрические цепи в виде алгебраической суммы э. д. с. входящих в контур источников напряжений Линейные электрические цепи и приводя подобные члены, получаем

Линейные электрические цепи

Здесь N — общее количество независимых источников э. д. с., входящих в состав цепи; Линейные электрические цепи — коэффициенты, представляющие собой алгебраические суммы слагаемых вида Линейные электрические цепи

Так как Линейные электрические цепи определяются только параметрами матрицы контурных сопротивлений, т. е. параметрами пассивных элементов цепи и коэффициентами управления зависимых источников, то значения Линейные электрические цепи не зависят от э. д. с. независимых источников напряжения. Каждое из слагаемых вида Линейные электрические цепи можно рассматривать как частичный ток k-го контура, вызванный действием источника э. д. с. Линейные электрические цепи

Действительно, если все входящие в цепь независимые источники э. д. с., кроме Линейные электрические цепи выключены (заменены короткозамыкающими перемычками), то ток k-го контура

Линейные электрические цепи

Следовательно, контурный ток любого контура линейной электрической цепи, содержащей независимые источники напряжения, равен сумме частичных токов, вызванных действием каждого из независимых источников по отдельности:

Линейные электрические цепи

Из анализа выражений (4.26), (4.27) вытекает физический смысл коэффициентов Линейные электрические цепи — они представляют собой комплексные передаточные проводимости цепи от зажимов Линейные электрические цепи к которым подключен независимый источник напряжения м к зажимам k—k', к которым подключена ветвь с током Линейные электрические цепи причем каждая из комплексных передаточных проводимостей определяется в режиме, когда все независимые источники напряжения, кроме Линейные электрические цепи выключены.

Если линейная электрическая цепь содержит независимые источники тока, то используя выражение (4.23), можно показать, что узловое напряжение каждого узла такой цепи равно сумме частичных узловых напряжений, вызванных каждым из источников тока в отдельности. При определении частичного узлового напряжения k-го узла, вызванного действием j-го источника тока, все остальные источники тока выключаются, т. е. ветви, содержащие эти источники, разрываются.

Пусть в рассматриваемой цепи имеется l независимых источников напряжения и m независимых источников тока. Присвоим ветвям, содержащим независимые источники напряжения, номера от 1 до l, а ветвям, содержащим независимые источники тока, от l + 1 до l + m. Составляя уравнения электрического равновесия такой цепи методами контурных токов или узловых напряжений и решая эти уравнение с помощью формул Крамера, находим ток и напряжение k-й ветви

Линейные электрические цепи

Здесь Линейные электрические цепи - комплексные коэффициенты передачи цепи по току и напряжению;Линейные электрические цепи — комплексные передаточные проводимости и сопротивления. Каждая из величин Линейные электрические цепиопределяется в режиме, когда все независимые источники, кроме источника, находящегося в j-й ветви, выключены, т. е. представлены своими внутренними сопротивлениями.

На принципе наложения основан широко используемый на практике метод анализа цепей — метод наложения. Его удобно применять в тех случаях, когда по условиям задачи требуется определить ток или напряжение одной из ветвей электрической цепи, в состав которой входит несколько независимых источников. В соответствии с принципом наложения искомый ток (напряжение) представляют в виде суммы частичных токов (напряжений). Для определения частичных токов (напряжений) используют эквивалентные схемы цепи, получаемые из исходной путем выключения всех независимых источников, кроме одного, вызывающего соответствующий частичный ток (напряжение). Таким образом, задача анализа сложной цепи, содержащей несколько независимых источников энергии, заменяется рядом более простых задач по исследованию цепей с одним независимым источником. Следует обратить внимание на то, что при определении частичных токов выключаются только независимые источники тока или напряжения. Параметры зависимых источников учитываются в матрице узловых проводимостей или контурных сопротивлений и при определении частичных токов (напряжений) эти источники не выключаются.

Пример №10

Используя метод наложения, определим ток Линейные электрические цепи электрической цепи, комплексная схема замещения которой приведена на рис. 4.2, а. В соответствии с принципом наложения представим ток Линейные электрические цепи в виде суммы двух частичных токов Линейные электрические цепи вызванных действием источника напряжения Линейные электрические цепи и источника тока Линейные электрические цепи соответственно. Эквивалентные схемы для определения частичных токов приведены на рис. 4.9, а, б. Используя эквивалентные преобразования участков цепей со смешанным соединением элементов, определим частичные токи:

Линейные электрические цепи

а затем, суммируя их, найдем искомый ток

Линейные электрические цепи

Из полученных выражений видно, что комплексный коэффициент передачи рассматриваемой цепи по току от зажимов 5—5' к зажимам 6—6’ и комплексная передаточная проводимость этой цепи от зажимов 1—1’ к зажимам 6—6' (номера зажимов совпадают с номерами ветвей) равны соответственно:

Линейные электрические цепи

Метод наложения оказывается весьма эффективным и при анализе линейных цепей, находящихся под воздействием колебаний сложной формы. В этом случае сложное внешнее воздействие представляют в

Линейные электрические цепи

виде конечной или бесконечной суммы колебаний более простой формы, реакция цепи на воздействие которых может быть определена с помощью известных методов (подробнее см. гл. 6).

Необходимо отметить, что принцип наложения применим только для определения токов или напряжений линейной электрической цепи и не может быть использован для нахождения величин, которые не являются линейными функциями токов или напряжений. В частности, мощность, потребляемая каким-либо участком линейной электрической цепи, находящейся под воздействием нескольких независимых источников, не равна сумме мощностей, потребляемых этим же участком при воздействии каждого из независимых источников в отдельности .

Теорема взаимности

При изучении методов формирования уравнений электрического равновесия было установлено, что матрицы контурных сопротивлений и узловых проводимостей линейных цепей, составленных только из сопротивлений, емкостей, индуктивностей и независимых источников тока или напряжения, являются симметричными относительно главной диагонали. Можно показать, что симметричность этих матриц не нарушится и в том случае, когда в цепи имеется произвольное количество связанных индуктивностей. На симметричности матриц узловых проводимостей и контурных сопротивлений основано важное свойство линейных пассивных электрических цепей, которое формулируется в виде теоремы взаимности, или обратимости

Рассмотрим линейную пассивную электрическую цепь, составленную из сопротивлений, емкостей и индуктивностей (в том числе и связанных).

В соответствии с теоремой взаимности контурный ток k-го контура цепи, вызванный действием единственного независимого источника напряжения, помещенного в i-й контур, равен контурному току i-гo контура, вызванному действием того же источника напряжения, перенесенного из i-гo контура в k-й.

Для доказательства теоремы выделим из рассматриваемой цепи главные ветви k-го и i-го контуров, а остальную часть цепи изобразим в виде четырехполюсника. Если независимый источник напряжения

Линейные электрические цепи

Линейные электрические цепи помещен в i-й контур (рис. 4.10, а), то в соответствии с выражением (4.14) контурный ток k-го контура

Линейные электрические цепи

Аналогичным образом находим контурный ток i-го контура, вызванный действием того же источника напряжения Линейные электрические цепи перенесенного из i-го контура в k-й (рис. 4.10,6):

Линейные электрические цепи

Выражения (4.28) и (4.29) отличаются только порядком индексов в алгебраических дополнениях Линейные электрические цепи Учитывая симметричность матрицы контурных сопротивлений рассматриваемой цепи относительно главной диагонали, нетрудно прийти к выводу, что Линейные электрические цепи а следовательно, Линейные электрические цепи

Теорема взаимности для случая, когда внешнее воздействие на цепь задается в виде независимого источника тока, может быть сформулирована следующим образом.

Если независимый источник тока Линейные электрические цепи подключенный к какой-либо паре зажимов линейной пассивной цепи, вызывает на другой паре зажимов напряжение Линейные электрические цепи (рис. 4.11, а), то этот же источник тока, подключенный ко второй паре зажимов (рис. 4.11, б), вызовет на первой паре зажимов то же напряжение Линейные электрические цепи

Доказательство этой теоремы взаимности производится гак же, как это было сделано при питании цепи от независимого источника напряжения.

Если электрическая цепь удовлетворяет теореме взаимности (в любой формулировке), то говорят, что она обладает взаимностью (обратимостью). Электрические цепи, обладающие взаимностью, называются взаимными (обратимыми). Если электрическая цепь не обладает взаимностью, то она является невзаимной (необратимой). К необратимым цепям относятся, в частности, нелинейные цепи (элементы матриц контурных сопротивлений и узловых проводимостей таких цепей зависят от токов или напряжений ветвей) и цепи, содержащие зависимые источники (матрицы контурных сопротивлений и узловых проводимостей таких цепей, как правило, несимметричны относительно главных диагоналей).

Линейные электрические цепи

Применение теоремы взаимности в сочетании с принципом наложения позволяет в ряде случаев существенно упростить определение тока или напряжения какой-либо ветви электрической цепи, содержащей несколько независимых источников напряжения или тока.

Пример №11

Пусть, например, линейная электрическая цепь содержит Л/ независимых источников напряжения Линейные электрические цепи размещенных соответственно в ветвях 1, 2, ..., i, ..., N. Определим ток k-й ветви, не содержащей источников энергии. Найдем сначала токи Линейные электрические цепи соответственно 1, 2, .... i, ..., N ветвей цепи, вызванные действием некоторого дополнительного источника э.д.с. Линейные электрические цепи помещенного в k-ю ветвь, при выключенных источниках Линейные электрические цепи Далее, в соответствии с теоремой взаимности найдем частичные токи Линейные электрические цепи вызываемые в k-й ветви действием каждого из источников Линейные электрические цепи в отдельности. Если бы э.д.с. источника, расположенного в i-й ветви, Линейные электрические цепи, была равна Линейные электрические цепи то согласно теореме взаимности частичный ток k-й ветви, Линейные электрические цепивызванный действием источника, расположенного в i-й ветви, был бы равен Линейные электрические цепиЕсли Линейные электрические цепи то частичный ток k-й ветви Линейные электрические цепи вызванный действием э.д.с. Линейные электрические цепи пропорционален Линейные электрические цепи

Линейные электрические цепи

Суммируя частичные токи, вызванные действием всех независимых источников напряжения, находим

Линейные электрические цепи

Таким образом, анализ сложной электрической цепи, содержащей N независимых источников напряжения, свелся к определению токов N ветвей более простой цепи, содержащей один независимый источник напряжения.

Теорема компенсации

Теорема компенсации формулируется следующим образом: токи и напряжения произвольной электрической цепи ие изменятся, если любую ветвь этой цепи заменить либо идеальным источником напряжения, э.д.с. которого равна напряжению данной ветви и направлена противоположно этому напряжению, либо идеальным источником тока, ток которого равен току рассматриваемой ветви и совпадает с иим по направлению.

Теорема компенсации базируется на общих свойствах основной системы уравнений электрического равновесия цепи и не накладывает ограничений на тип рассматриваемой цепи или характер внешнего воздействия. Рассмотрим, например, линейную электрическую цепь, находящуюся под гармоническим воздействием. Выделим в данной

Линейные электрические цепи

цепи произвольную ветвь, комплексное сопротивление которой равно Линейные электрические цепи (рис. 4.12, а). Напряжение и ток этой ветви связаны уравнением, составленным на основании закона Ома в комплексной форме Линейные электрические цепи Линейные электрические цепи В соответствии с теоремой компенсации выделенную ветвь можно заменить либо идеальным источником напряжения, э. д. с: которого равна напряжению данной ветви Линейные электрические цепи и направлена навстречу этому напряжению (рис. 4.12, б), либо идеальным источником тока, ток которого равен току рассматриваемой ветви      Линейные электрические цепиЛинейные электрические цепи и совпадает с ним по направлению (рис. 4.12, в). Составляя основную систему уравнений электрического равновесия каждой из цепей (рис. 4.12, б, в), убедимся, что она совпадает с основной системой уравнений электрического равновесия исходной цепи. Действительно, при формировании уравнений электрического равновесия исходной цепи напряжение Линейные электрические цепи на выделенной ветви учитывается со знаком плюс в левой части уравнений баланса напряжений, составленных для контуров, содержащих рассматриваемую ветвь (предполагается, что направление обхода этих контуров совпадает с направлением тока Линейные электрические цепи При составлении уравнений электрического равновесия цепи (рис. 4.12, б) член Линейные электрические цепи в левой части соответствующих уравнений отсутствует, однако в правой части этих уравнений появляется член Линейные электрические цепи Следовательно, замена комплексного сопротивления Линейные электрические цепи идеальным источником напряжения Линейные электрические цепи соответствует переносу члена Линейные электрические цепи из левой части уравнений баланса напряжений в правую с соответствующим изменением знака.

При составлении уравнений электрического равновесия исходной цепи (рис. 4.12, а) ток Линейные электрические цепи выделенной ветви учитывается в левой части уравнений баланса токов; соответствующие уравнения преобразованной цепи (рис. 4.12, в) вместо тока Линейные электрические цепи, протекающего через комплексное сопротивление Линейные электрические цепи содержат равный ему ток Линейные электрические цепи идеального источника тока. Таким образом, цепи, схемы которых приведены на рисунке, являются эквивалентными.

Необходимо отметить, что источники напряжения и тока, заменившие в соответствии с теоремой компенсации сопротивление ветви Линейные электрические цепи зависимые: э. д. с. источника напряжения Линейные электрические цепи прямо пропорциональна току ветви, содержащей этот источник, а ток источника тока Линейные электрические цепи прямо пропорционален напряжению источника тока. Из эквивалентности испей следует, что идеальный источник напряжения, э. д. с. которого пропорциональна отдаваемому току Линейные электрические цепи и идеальный источник тока, ток которого прямо пропорционален напряжению на зажимах источника Линейные электрические цепи могут быть заменены комплексным сопротивлением

Линейные электрические цепи

Теорема компенсации расширяет возможности эквивалентных преобразований электрических цепей.

Автономные и неавтономные двухполюсники

Рассмотрим произвольный линейный двухполюсник, содержащий наряду с идеализированными пассивными элементами управляемые и неуправляемые источники тока или напряжения. Представляют интерес два предельных режима работы такого двухполюсника: режим холостого хода, когда ток внешних выводов двухполюсника равен нулю, и режим короткого замыкания, при котором напряжение между внешними выводами двухполюсника равно нулю. Напряжение между выводами двухполюсника в режиме холостого хода называется напряжением холостого хода, а ток между выводами двухполюсника в режиме короткого замыкания — током короткого замыкания.

Двухполюсник, напряжение холостого хода или ток короткого замыкания которого не равны нулю, назовем автономным. Очевидно, что автономный двухполюсник должен содержать один или несколько нескомпенсированных независимых источников, т. е. таких источников, сумма частичных реакций на воздействие которых на внешних зажимах двухполюсника не равна тождественно нулю.

Если напряжение холостого хода в ток короткого замыкания двухполюсника тождественно равны нулю, то такой двухполюсник будем называть неавтономным. Неавтономный двухполюсник не может содержать нескомпенсированных независимых источников, т. е. в его состав могут входить только идеализированные пассивные элементы и управляемые источники тока или напряжения. Таким образом, активные двухполюсники могут быть автономными или неавтономными, а пассивные двухполюсники представляют собой частный случай неавтономных.

Комплексным входным сопротивлением Линейные электрические цепи неавтономного двухполюсника называется отношение комплексной амплитуды напряжения на его зажимах к комплексной амплитуде тока (заметим, что данное ранее определение комплексного входного сопротивления пассивного двухполюсника естественным образом вытекает из этого определения). Если неавтономный двухполюсник не содержит управляемых источников, т. е. является пассивным, то его комплексное входное сопротивление может быть найдено, например, путем постепенного сворачивания схемы двухполюсника с использованием методов преобразования пассивных цепей. В общем случае комплексное входное сопротивление неавтономного двухполюсника находят методом пробного источника, в соответствии с которым к входу исследуемого двухполюсника подключают произвольный независимый источник напряжения или тока (пробный источник) и определяют отношение комплексных действующих значений напряжения и тока на внешних зажимах двухполюсника.

Пример №12

Определим комплексное входное сопротивление неавтономного двухполюсника, схема которого изображена на рис. 4.13, а (задачи такого типа часто встречаются на практике, например при определении комплексного входного сопротивления усилительного каскада на полевом транзисторе).

Линейные электрические цепи

Подключим к входным зажимам исследуемой цепи пробный источник напряжения Линейные электрические цепи (рис. 4.13, б) и найдем комплексное действующее значение входного тока двухполюсника

Линейные электрические цепи

Для определения комплексного действующего значения напряжения на емкости Линейные электрические цепи составим уравнение электрического равновесия цепи (рис. 4.13, б) по методу узловых напряжений

Линейные электрические цепи

откуда 

Линейные электрические цепи

Таким образом, входной ток цепи прямо пропорционален э.д.с. пробного источника

Линейные электрические цепи

и, следовательно, комплексное входное сопротивление двухполюсника не зависит от этой э.д.с.

Линейные электрические цепи

В области низких частот Линейные электрические цепи входное сопротивление двухполюсника имеет емкостной характер

Линейные электрические цепи

причем эквивалентная входная емкость двухполюсника

Линейные электрические цепи

Аналогичный результат получается и в том случае, когда в качестве пробного используют произвольный независимый источник тока Линейные электрические цепи

Каждому автономному двухполюснику можно поставить в соответствие некоторый неавтономный двухполюсник, который получается из исходного путем выключения всех входящих в него независимых источников тока и напряжения. Комплексным входным сопротивлением автономного двухполюсника называется комплексное входное сопротивление соответствующего ему неавтономного двухполюсника. Таким образом, комплексное входное сопротивление автономного двухполюсника может быть найдено как отношение комплексной амплитуды напряжения к комплексной амплитуде тока на зажимах неавтономного двухполюсника, который получается из заданного автономного двухполюсника путем выключения всех входящих в него независимых источников тока и напряжения. Комплексное входное сопротивление линейного автономного двухполюсника может быть также найдено как отношение комплексных изображений напряжения холостого хода и тока короткого замыкания этого двухполюсника.

Пример №13

Определим напряжение холостого хода Линейные электрические цепи ток короткого замыкания Линейные электрические цепи и комплексное входное сопротивление Линейные электрические цепи активного двухполюсника, схема которого приведена на рис. 4.14, а.

Для определения напряжения холостого хода двухполюсника Линейные электрические цепи составим уравнение электрического равновесия рассматриваемой цепи по методу узловых напряжений

Линейные электрические цепи

откуда 

Линейные электрические цепи

где Линейные электрические цепи

Линейные электрические цепи

При коротком замыкании зажимов двухполюсника (рис. 4.14, б) выполняется соотношение

Линейные электрические цепи

и, следовательно,

Линейные электрические цепи

При выключении независимого источника э.д.с. Линейные электрические цепи двухполюсник превращается в пассивный (рис. 4.14, в), поэтому его комплексное входное сопротивление Линейные электрические цепиопределяется выражением

Линейные электрические цепи

Аналогичный результат получается и в том случае, когда комплексное входное сопротивление рассматриваемого автономного двухполюсника определяется как отношение комплексных действующих значений напряжения холостого хода Линейные электрические цепи и тока короткого замыкания Линейные электрические цепи

Теорема об эквивалентном источнике

Рассмотрим линейную электрическую цепь, которая наряду с идеялизированными пассивными элементами содержит управляемые и неуправляемые источники тока и напряжения. Выделим в этой цепи произвольную ветвь а—а' (рис. 4.15, а), а остальную часть цепи, к которой подключена эта ветвь, представим в виде автономного двухполюсника АД.

В соответствии с теоремой об эквивалентном источнике ток произвольной ветви линейной электрической цепи не изменится, если автономный двухполюсник, к которому подключена данная ветвь, заменить эквивалентным линеаризованным источником энергии, который может быть представлен последовательной или параллельной схемой замещения. Э. д. с. идеального источника напряжения в последовательной схеме замещения равна напряжению холостого хода

Линейные электрические цепи

автономного двухполюсника (рис. 4.15, 6), ток идеального источника тока в параллельной схеме замещения равен току короткого замыкания автономного двухполюсника (рис. 4.15, в), а внутреннее сопротивление и внутренняя проводимость эквивалентного источника равны соответственно комплексному входному сопротивлению и комплексной входной проводимости автономного двухполюсника.

Для доказательства теоремы введем в выделенную ветвь а—а' два вспомогательных независимых источника напряжения Линейные электрические цепи э. д. с. которых равны по значению, но противоположны по направлению (рис. 4.16, а). Очевидно, что введение двух скомпенсированных источников э. д. с. не нарушает режима работы цепи, поэтому ток ветви а—а' преобразованной цепи равен току Линейные электрические цепи исходной цепи (см. рис. 4.15, а).

Линейные электрические цепи

Далее, используя принцип наложения, представим ток рассматриваемой ветви преобразованной цепи в виде суммы двух составляющих Линейные электрические цепигде Линейные электрические цепи —частичный ток а-й ветви, создаваемый действием независимого источника напряжения Линейные электрические цепи и всех независимых источников, входящих в состав автономного двухполюсника АД, а Линейные электрические цепи —частичный ток а-й ветви, вызываемый действием независимого источника напряжения Линейные электрические цепи (рис. 4.16,6, в).

Из эквивалентной схемы, изображенной на рис. 4.16, б:

Линейные электрические цепи

где Линейные электрические цепи — напряжение на зажимах а—а’ автономного двухполюсника в режиме, когда отдаваемый им ток равен Линейные электрические цепи До сих пор не накладывалось никаких ограничений на э. д. с. вспомогательных источников напряжения. Выберем теперь Линейные электрические цепи таким образом, чтобы Линейные электрические цепи= 0. Очевидно, что в этом случае напряжение на внешних зажимах АД равно напряжению холостого хода автономного двухполюсника Линейные электрические цепи.

Используя выражение (4.30), найдем значение э. д. с. Линейные электрические цепи при котором частичный ток а-й ветви Линейные электрические цепи = 0:

Линейные электрические цепи

Таким образом, если э. д. с. вспомогательных источников выбрать равными напряжению холостого хода автономного двухполюсника Линейные электрические цепи то ток ветви Линейные электрические цепи будет равен частичному току Линейные электрические цепи создаваемому действием источника напряжения Линейные электрические цепи при выключении независимых источников, входящих в состав автономного двухполюсника, и выключении источника напряжения Линейные электрические цепи

Используя эквивалентную схему для определения частичного тока Линейные электрические цепи находим

Линейные электрические цепи

где Линейные электрические цепи — комплексное входное сопротивление исходного автономного двухполюсника, равное комплексному входному сопротивлению приведенного на рис. 4.16, в неавтономного двухполюсника НД. Как видно из выражения (4.32), ток a-й ветви исходной цепи (см. рис. 4.15, а) равен току некоторой цепи, содержащей помимо сопротивления Линейные электрические цепи источник напряжения Линейные электрические цепи и комплексное сопротивление Линейные электрические цепи (см. рис. 4.15, б). Итак, ток выделенной ветви Линейные электрические цепи не изменился при замене автономного двухполюсника эквивалентным источником энергии, э. д. с. которого равна напряжению холостого хода автономного двухполюсника, а внутреннее сопротивление — его комплексному входному сопротивлению.

Переходя от последовательной схемы замещения эквивалентного источника к параллельной, можно показать, что значение тока Линейные электрические цепи независимого источника тока (см. рис. 4.15, в) равно току короткого замыкания автономного двухполюсника, а внутренняя проводимость Линейные электрические цепи— его комплексной входной проводимости Линейные электрические цепи

Воспользовавшись теоремой об эквивалентном источнике, можно найти последовательную или параллельную схемы замещения любого сколь угодно сложного линейного активного двухполюсника, поэтому данную теорему часто называют теоремой об активном двухполюснике. Эта теорема позволяет существенно упростить анализ цепей, особенно в тех случаях, когда требуется определить ток или напряжение только одной ветви сложной цепи, содержащей большое количество управляемых и неуправляемых источников тока и напряжения. В связи с тем что параметры элементов последовательной и параллельной схем замещения активного двухполюсника легко поддаются измерениям, выполняемым на внешних зажимах, теорему об эквивалентном источнике применяют и для построения эквивалентных схем активных двухполюсников по результатам их экспериментального исследования.

Пример №14

Используя теорему об эквивалентном источнике, определим ток Линейные электрические цепи цепи, комплексная схема замещения которой приведена на рис. 4.2, а. Выделим из рассматриваемой цепи ветвь, содержащую сопротивление Линейные электрические цепи и представим остальную часть цепи, которую можно рассматривать как aetnoномный двухполюсник, последовательной схемой замещения (рис. 4.17, а). Э.д.с.

Линейные электрические цепи

источника напряжения Линейные электрические цепи определяется как напряжение холостого хода на зажимах автономного двухполюсника, схема которого приведена на рис. 4.17, б:

Линейные электрические цепи

Внутреннее сопротивление эквивалентного источника равно входному сопротивлению неавтономного двухполюсника (рис. 4.17, в):

Линейные электрические цепи

Наконец, используя преобразованную схему рассматриваемой цепи (рис. 4.17, а), находим искомый ток

Линейные электрические цепи