Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Технологии программирования. История развития средств вычислительной техники

Содержание:

Введение

Современное общество характеризуется резким ростом объемов информации, циркулирующей во всех сферах человеческой деятельности. Это привело к информатизации общества.

Под информатизацией общества понимают организованный социально-экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав физических и юридических лиц на основе формирования и использования информационных ресурсов - документов в различной форме представления.

В результате ускорения научно-технического прогресса человечество уже не в состоянии отслеживать лавинообразно растущий поток информации, и значительная полезная её часть оказывается безвозвратно утерянной. Так ученому иногда оказывается легче заново произвести исследование, чтобы найти решение научной проблемы, чем перечитывать массу литературы, а в библиотеках скапливаются десятки тысяч изданий, которые никогда не были затребованы читателями. Школьникам и студентам, что бы стать квалифицированными специалистами, приходиться всё дольше учиться.

А профессиональные работники любой сферы производства вынуждены постоянно совершенствовать с вою подготовку, что бы соответствовать требованиям рынка. Багаж знаний людей стал столь велик, что его все труднее осмыслить, привести в систему, а значит, и эффективно использовать.

Цель исследования - проанализировать историю развития средств вычислительной техники.

Задачи исследования:

1. Понятие средств вычислительной техники.

2. Роль вычислительной техники в жизни человека .

3. Становление и эволюция вычислительной техники до начала ХХ века.

4. Развитие вычислительной техники в XX веке.

5. Современное состояние развития вычислительной техники.

6. Перспективы развития вычислительной техники.

Объект исследования – средства вычислительной техники.

Предмет исследования – история развития средств вычислительной техники.

1 Теоретические аспекты исследования средств вычислительной техники

1.1 Понятие средств вычислительной техники

Современные средства компьютерной техники могут быть классифицированы следующим образом:

  • персональные компьютеры;
  • корпоративные компьютеры;
  • суперкомпьютеры.

Персональные компьютеры представляют собой вычислительные системы, все ресурсы которых полностью направлены на обеспечение деятельности одного работника. Это наиболее многочисленный класс средств вычислительной техники, в составе которого можно выделить:

  • карманные компьютеры (КПК);
  • ультрамобильные компьютеры (UMPC, нетбуки, субноутбуки);
  • мобильные компьютеры (ноутбуки, планшетные);
  • настольные компьютеры.

Карманные компьютеры (диагональ экрана до 6 дюймов) являются наиболее компактными средствами вычислительной техники и предназначены для решения задач быстрого информационного обслуживания пользователя. Например, они могут решать задачи свойственные органайзерам, выполнять функции словаря, предоставлять доступ в Интернет и др.

Для работы КПК требуется особое программное обеспечение, не совместимое с программами других видов компьютеров [6, c. 67].

Ультрамобильные (диагональ экрана от 7 до 12 дюймов) и мобильные (диагональ экрана от 13 до 17 дюймов) компьютеры представляют собой миниатюрные версии настольных персональных компьютеров разной степени компактности.

Их основная задача обеспечить потребности пользователя в вычислительной технике независимо от местонахождения.

У этого вида компьютеров наиболее сложными являются проблемы охлаждения и относительно малого времени автономной работы. Последняя, например, решается как путем увеличения энергоемкости батарей, так и внедрением новых энергосберегающих технологий. Они имеют два возможных исполнения: книжка (ноутбук) или планшет. В последнем случае вместо клавиатуры применяется сенсорный экран.

Настольные персональные компьютеры являются наиболее массовыми среди персональных средств вычислительной техники. В настоящее время различают два класса настольных ПК: IBM PC и совместимые с ними компьютеры, а также персональные компьютеры Macintosh фирмы Apple. Компактной версией настольного компьютера является неттоп.

Бурное развитие технологий производства электронных компонент привело к тому, что технические характеристики мобильных и ультрамобильных компьютеров вплотную приблизились к возможностям настольных персональных компьютеров [13, c. 31].

Корпоративные компьютеры (иногда называемые мини-ЭВМ или main frame) представляют собой вычислительные системы, обеспечивающие совместную деятельность многих работников в рамках одной организации, одного проекта, одной сферы информационной деятельности при использовании одних и тех же информационно-вычислительных ресурсов. Это многопользовательские вычислительные системы, имеющие центральный блок с большой вычислительной мощностью и значительными информационными ресурсами, к которому подсоединяется большое число рабочих мест с минимальной оснащенностью (видеотерминал, клавиатура, устройство позиционирования типа «мышь» и, возможно, устройство печати).

В принципе в качестве рабочих мест, соединенных с центральным блоком корпоративного компьютера, могут быть использованы и персональные компьютеры.

Область применения корпоративных компьютеров – реализация информационных технологий обеспечения управленческой деятельности в крупных финансовых и производственных организациях, создание информационных систем, обслуживающих большое число пользователей в рамках одной функции (биржевые и банковские системы, бронирование и продажа билетов и т. п.).

Суперкомпьютеры представляют собой вычислительные системы с предельными характеристиками вычислительной мощности и информационных ресурсов.

Они используются в военной, космической областях деятельности, в фундаментальных научных исследованиях, глобальном прогнозировании погоды.

Огромная вычислительная мощь суперкомпьютеров обеспечивается за счет одновременной параллельной работы большого числа вычислительных блоков, построенных на основе тех же компонент, что и персональные компьютеры.

Данная классификация достаточно условна, поскольку интенсивное развитие технологий производства электронных компонентов, значительный прогресс в совершенствовании компьютеров и их наиболее важных составляющих элементов приводят к размыванию границ между указанными классами среди вычислительной техники.

Кроме того, приведенная классификация учитывает только автономное использование вычислительных систем. В настоящее время преобладает тенденция их объединения в вычислительные сети, что позволяет интегрировать информационно-вычислительные ресурсы для наиболее эффективной реализации информационных технологий.

1.2 Роль вычислительной техники в жизни человека

Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер – они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется [7, c. 28].

Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.

Компьютеры в учреждениях. Компьютеры в буквальном смысле совершили революцию в деловом мире. Секретарь практически любого учреждения при подготовке докладов и писем производит обработку текстов. Учрежденческий аппарат использует персональный компьютер для вывода на экран дисплея широкоформатных таблиц и графического материала. Бухгалтеры применяют компьютеры для управления финансами учреждения и введение документации.

Компьютеры на производстве. Компьютеры находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов. Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Компьютер – помощник конструктора. Проекты конструирования самолета, моста или здания требуют затрат большого количества времени и усилий. Они представляют собой один из самых трудоёмких видов работ. Сегодня, в век компьютера, конструкторы имеют возможность посвятить своё время целиком процессу конструирования, поскольку расчёты и подготовку чертежей машина «берёт на себя». Пример: конструктор автомобилей исследует с помощью компьютера, как форма кузова влияет на рабочие характеристики автомобиля. С помощь таких устройств, как электронное перо и планшет, конструктор может быстро и легко вносить любые изменения в проект и тут же наблюдать результат на экране дисплея.

Компьютер в магазине самообслуживания. Представьте себе, что идёт 1979 год и вы работаете неполный рабочий день в качестве кассира в большом универмаге. Когда покупатели выкладывают отобранные ими покупки на прилавок, вы должны прочесть цену каждой покупки и ввести её в кассовый аппарат. А теперь вернёмся в наши дни. Вы по-прежнему работаете кассиров и в том же самом универмаге. Но как много здесь изменилось. Когда теперь покупатели выкладывают свои покупки на прилавок, вы пропускаете каждую из них через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров [14].

Компьютер в банковских операциях. Выполнение финансовых расчётов с помощью домашнего персонального компьютера – это всего лишь одно из его возможных применений в банковском деле. Мощные вычислительные системы позволяют выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк. Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка. Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт. Всё, что требуется, - вставить пластмассовую банковскую карточку в автоматическое устройство. Как только это сделано, необходимые операции будут выполнены.

Компьютер в медицине. Как часто вы болеете? Вероятно, у вас была простуда, ветрянка, болел живот? Если в этих случаях вы обращались к доктору, скорее всего он проводил осмотр быстро и достаточно эффективно. Однако медицина – это очень сложная наука. Существует множество болезней, каждая из которых имеет только ей присущие симптомы. Кроме того, существуют десятки болезней с одинаковыми и даже совсем одинаковыми симптомами. В подобных случаях врачу бывает трудно поставить точный диагноз. И здесь ему на помощь приходит компьютер. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза, т.е. для уточнения того, что именно болит у пациента. Для этого больной тщательно обследуется, результаты обследования сообщаются компьютеру. Через несколько минут компьютер сообщает, какой из сделанных анализов дал аномальный результат. При этом он может назвать возможный диагноз [8, c. 32].

Компьютер в сфере образования. Сегодня многие учебные заведения не могут обходиться без компьютеров. Достаточно сказать, что с помощью компьютеров: трёхлетние дети учатся различать предметы по их форме; шести- и семилетние дети учатся читать и писать; выпускники школ готовятся к вступительным экзаменам в высшие учебные заведения; студенты исследуют, что произойдёт, если температура атомного реактора превысит допустимый предел. «Машинное обучение» – термин, обозначающий процесс обучения при помощи компьютера. Последний в этом случае выступает в роли «учителя». В этом качестве может использоваться микрокомпьютер или терминал, являющийся частью электронной сети передачи данных. Процесс усвоения учебного материала поэтапно контролируется учителем, но если учебный материал даётся в виде пакета соответствующих программ ЭВМ, то его усвоение может контролироваться самим учащимся.

Компьютеры на страже закона. Вот новость, которая не обрадует преступника: «длинные руки закона» теперь обеспечены вычислительной техникой. «Интеллектуальная» мощь и высокое быстродействие компьютера, его способность обрабатывать огромное количество информации, теперь поставлены на службу правоохранительных органов для повышения эффективности работы. Способность компьютеров хранить большое количество информации используется правоохранительными органами для создания картотеки преступной деятельности. Электронные банки данных с соответствующей информацией легко доступны государственным и региональным следственным учреждениям всей страны. Так, федеральное бюро расследования (ФБР) располагает общегосударственным банком данных, который известен как национальный центр криминалистической информации. Компьютеры используются правоохранительными органами не только в информационных сетях ЭВМ, но и в процессе розыскной работы. Например, в лабораториях криминалистов компьютеры помогаю проводить анализ веществ, обнаруженных на месте преступления. Заключения компьютера-эксперта часто оказываются решающими в доказательствах по рассматриваемому делу [15, c. 35].

Если на одном компьютере работают хотя бы два человека, у них уже возникает желание использовать этот компьютер для обмена информацией друг с другом. На больших машинах, которыми пользуются одновременно десятки, а то и сотни человек, для этого предусмотрены специальные программы, позволяющие пользователям передавать сообщения друг другу. Стоит ли говорить о том, что как только появилась возможность объединять несколько машин в сеть, пользователи ухватились за эту возможность не только для того, чтобы использовать ресурсы удаленных машин, но и чтобы расширить круг своего общения. Создаются программы, предназначенные для обмена сообщениями пользователей, находящихся на разных машинах. Наиболее универсальное средство компьютерного общения – это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.

2 Анализ становления и развития вычислительной техники

2.1 Становление и эволюция вычислительной техники до начала ХХ века

История счётных устройств насчитывает много веков. Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. Для облегчения счета люди стали использовать пальцы сначала одной руки, затем обеих, а в некоторых племенах и пальцы ног.

Раннему развитию письменного счета препятствовала сложность арифметических действий при существовавших в то время перемножениях чисел. Кроме того, писать умели немногие и отсутствовал учебный материал для письма – пергамент начал производиться примерно со II века до н.э., папирус был слишком дорог, а глиняные таблички неудобны в использовании. Эти обстоятельства объясняют появление специального счетного прибора – абака. Он представлял собой доску с желобками, в которых по позиционному принципу размещали какие-нибудь предметы – камешки, косточки. Позднее, около 500 г. н.э., абак был усовершенствован и на свет появились счёты – устройство, состоящее из набора костяшек, нанизанных на стержни [9, c. 80].

На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", который почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В конце XV века Леонардо да Винчи (1452-1519) создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Но рукописи да Винчи обнаружили лишь в 1967г., поэтому биография механических устройств ведется от суммирующей машины Паскаля. По его чертежам в наши дни американская фирма по производству компьютеров в целях рекламы построила работоспособную машину.

В 1623 г. Вильгельм Шиккард – профессор Тюбинского университета описал устройство "часов для счета". Это была первая механическая машина, которая могла только складывать и вычитать. В наше время по его описанию построена ее модель.

В 1642 г. французский математик Блез Паскаль (1623-1662) сконструировал счетное устройство, чтобы облегчить труд своего отца – налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками. Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры [16, c. 31].

Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни – единиц и десятков – вращались в одном направлении. Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялись с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.

В 1673 г. немецкий философ, математик, физик Готфрид Вильгельм Лейбниц (1646-1716) создал "ступенчатый вычислитель" – счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни, при этом использовалась двоичная система счисления. Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Машина являлась прототипом арифмометра, использующегося с 1820 года до 60-х годов ХХ века.

В 1804 г. французский изобретатель Жозеф Мари Жаккар (1752-1834) придумал способ автоматического контроля за нитью при работе на ткацком станке. Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Создание ткацкого станка, управляемого картами с пробитыми на них отверстиями и соединенными друг с другом в виде ленты, относится к одному из ключевых открытий, обусловивших дальнейшее развитие вычислительной техники.

Чарльз Ксавьер Томас (1785-1870) в 1820г. создал первый механический калькулятор, который мог не только складывать и умножать, но и вычитать и делить. Бурное развитие механических калькуляторов привело к тому, что к 1890 году добавился ряд полезных функций: запоминание промежуточных результатов с использованием их в последующих операциях, печать результата и т.п. Создание недорогих, надежных машин позволило использовать их для коммерческих целей и научных расчетов.

В 1822 г. английский математик Чарлз Бэббидж (1792-1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, Разностная машина, работала на паровом двигателе. Она высчитывала таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.

Аналитическую машину Бэббиджа построили энтузиасты из Лондонского музея науки. Она состоит из четырех тысяч железных, бронзовых и стальных деталей и весит три тонны. Правда, пользоваться ею очень тяжело - при каждом вычислении приходится несколько сотен (а то и тысяч) раз крутить ручку автомата. Числа записываются (набираются) на дисках, расположенных по вертикали и установленных в положения от 0 до 9. Двигатель приводится в действие последовательностью перфокарт, содержащих инструкции (программу) [10, c. 36].

Одновременно с английским ученым работала леди Ада Лавлейс (1815-1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Леди Лавлейс была единственной дочерью Джорджа Гордона Байрона. Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х гг. нашего столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. С недавнего времени у программистов всего мира появился свой профессиональный праздник. Он так и называется – «День программиста» – и празднуется 10 декабря. Как раз в день рождения Ады Лавлейс.

В 1855 г. братья Джорж и Эдвард Шутц из Стокгольма построили первый механический компьютер, используя работы Ч. Бэббиджа. В 1878 г. русский математик и механик Пафнутий Львович Чебышев создает суммирующий аппарат с непрерывной передачей десятков, а в 1881 году – приставку к нему для умножения и деления.

В 1880г. Вильгодт Теофилович Однер, швед по национальности, живший в Санкт-Петербурге сконструировал арифмометр. Его арифмометры отличались надежностью, средними габаритами и удобством в работе. Над арифмометром Однер начал работать в 1874 году, а в 1890 году он налаживает массовый выпуск арифмометров. Их модификация "Феликс" выпускалась до 50-х годов XX века.

2.2 Развитие вычислительной техники в XX веке

Новые изобретения XX века уже работали на электроэнергии. Спустя непродолжительное время после изобретения электронных ламп, в 1918 году советский ученый М.А. Бонч-Бруевич создал ламповый триггер – электронное приспособление, запоминающее электрические сигналы.

Принцип работы триггера походил на качели с защелками, которые располагались на высших точках качания. Когда качели доходили до одной верхней точки – защелка срабатывала, качание останавливалось, и в таком состоянии они могут задержаться очень долго. Когда защелка открывалась – качели достигали другой точки, и далее происходило все по кругу. По положению, в котором, спустя определенное время, окажутся качели через определенное время после их установки, можно сделать вывод, была открыта защелка либо нет. Качели будто бы запоминают срабатывание защелки – таким же образом и триггер запоминает, проходил ли через него сигнал или же нет.

Первые компьютеры вычисляли в тысячи раз быстрее счетных машин на механической основе, но имели очень большие габариты, что добавляло хлопот при их установке. ЭВМ располагалась в помещении размером 9х15 м, весила, ни много ни мало, 30 тонн и пожирала около 150 кВт/ч. В этой ЭВМ располагалось около 18 тысяч электронных ламп [17, c. 127].

2-е поколение ЭВМ появилось благодаря огромному по значимости изобретению в числе электроники этого века – транзистору. Миниатюрное полупроводниковое устройство позволяло сильно уменьшить размеры компьютеров и понизить используемую ими мощность. Скорость вычисления компьютеров увеличилась до миллиона операций в секунду.

В 1941 году инженер фирмы IBM Б.Фелпс начал работу по созданию десятичных электронных счетчиков для табуляторов, а в 1942 году создал экспериментальную модель электронного множительного устройства. В 1941 году Конрад Цузе построил первый в мире действующий релейный двоичный компьютер Z3 с программным управлением.

Одновременно с постройкой ENIAC, также в обстановке секретности, создавалась ЭВМ в Великобритании. Секретность была необходима потому, что проектировалось устройство для дешифровки кодов, которыми пользовались вооруженные силы Германии в период второй мировой войны. Математический метод дешифровки был разработан группой математиков, в число которых входил Алан Тьюринг (Alan Turing). В течение 1943 году в Лондоне была построена машина Colossus на 1500 электронных лампах. Разработчики машины - М.Ньюмен и Т.Ф.Флауэрс.

Хотя и ENIAC, и Colossus работали на электронных лампах, они по существу копировали электромеханические машины: новое содержание (электроника) было втиснуто в старую форму (структуру доэлектронных машин).

В 1937 году гарвардский математик Говард Эйкен (Howard Aiken) предложил проект создания большой счетной машины. Спонсировал работу президент компании IBM Томас Уотсон (Tomas Watson), который вложил в нее 500 тыс.$. Проектирование Mark-1 началось в 1939 году, строило этот компьютер нью-йоркское предприятие IBM. Компьютер содержал около 750 тыс. деталей, 3304 реле и более 800 км проводов [11, c. 78].

В 1944 году готовая машина была официально передана Гарвардскому университету.

В 1944 году американский инженер Джон Эккерт(John Presper Eckert) впервые выдвинул концепцию хранимой в памяти компьютера программы.

Эйкен, располагавший интеллектуальными ресурсами Гарварда и работоспособной машиной Mark-1, получил несколько заказов от военных. Так следующая модель - Mark-2 была заказана управлением вооружения ВМФ США. Проектирование началось в 1945 году, а постройка закончилась в 1947 году.Mark-2 представляла собой первую многозадачную машину - наличие нескольких шин позволяло одновременно передавать из одной части компьютера в другую несколько чисел.

В 1948 году Сергеем Александровичем Лебедевым(1990-1974) и Б.И.Рамеевым был предложен первый проект отечественной цифровой электронно - вычислительной машины. Под руководством академика Лебедева С.А. и Глушкова В.М. разрабатываются отечественные ЭВМ: сначала МЭСМ- малая электронная счетная машина (1951 год, Киев), затем БЭСМ- быстродействующая электронная счетная машина (1952 год, Москва). Параллельно с ними создавались Стрела, Урал, Минск, Раздан, Наири.

В 1949г. введена в эксплуатацию английская машина с хранимой программой - EDSAC (Electronic Delay Storage Automatic Computer) -конструктор Морис Уилкис (Maurice Wilkes) из Кембриджского университета. ЭВМ EDSAC содержала 3000 электронных ламп и в шесть раз производительнее своих предшественниц. Морис Уилкис ввел систему мнемонических обозначений для машинных команд, названную языком ассемблера.

В 1949г. Джон Моучли (John Mauchly) создал первый интерпретатор языка программирования под названием "Short Order Code".

Изобретенные в 1950 году интегральные микросхемы позволили многократно уменьшить количество электронных составляющих в компьютере, что облегчило сборку машин. ЭВМ 3-его поколения на данных схемах возникли в 1964 году [19, c. 20].

В 1951 году была закончена работа по созданию UNIVAC (Universal Automatic Computer). Первый образец машины UNIVAC-1 был построен для бюро переписи США. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана была на базе ЭВМ ENIAC и EDVAC.Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство, емкостью 1000 двенадцатиразрядных десятичных чисел, было выполнено на 100 ртутных линиях задержки.

Этот компьютер интересен тем, что он был нацелен на сравнительно массовое производство без изменения архитектуры и особое внимание было уделено периферийной части (средствам ввода-вывода).

Джей Форрестер запатентовал память на магнитных сердечниках. Впервые такая память применена на машине Whirlwind-1. Она представляла собой два куба с 32х32х17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля четности.

В этой машине была впервые использована универсальная неспециализированная шина (взаимосвязи между различными устройствами компьютера становятся гибкими) и в качестве систем ввода-вывода использовались два устройства: электронно-лучевая трубка Вильямса и пишущая машинка с перфолентой (флексорайтер).

"Традис", выпущенный в 1955г. - первый транзисторный компьютер фирмы "Белл телефон лабораторис" - содержал 800 транзисторов, каждый из которых был заключен в отдельный корпус.

В 1957г. в модели IBM 350 RAMAC впервые появилась память на дисках (алюминиевые намагниченные диски диаметром 61 см).

В июне 1971 года вышла в свет, непростая в реализации, универсальная интегральная микросхема, которая стало называться микропроцессором – главным компонентом компьютеров следующего поколения.

Конечно до творческого мышления человека, возможностей ЭВМ на сегодняшний день недостаточно. Поэтому всякая информация, которую необходимо представить пользователю в привычном для него виде, определенным образом кодируется, а именно в виде некоторой последовательности цифр, которую компьютер обучен распознавать [7, c. 23].

В 1971г. фирмой Intel (США) создан первый микропроцессор(МП) - программируемое логическое устройство, изготовленное по технологии СБИС.

В 1974 г. фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами. Эдвард Робертс из фирмы MITS построил первый персональный компьютер Altair на новом чипе от Intel - 8080. Altair оказался первым массовым ПК, положившим, по существу, начало целой индустрии. В комплект входили процессор, 256-байтный модуль памяти, системная шина и некоторые другие мелочи.

Молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft), являющуюся сегодня крупнейшим производителем программного обеспечения.

В 1981г. фирма Compaq выпустила первый Laptop. Никлаус Вирт разработал язык программирования МОДУЛА-2.

Создан первый портативный компьютер - Osborne- 1 весом около 12 кг. Несмотря на довольно успешное начало, через два года компания обанкротилась.

1981 г. Фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.

В 1982 г. Фирма Intel выпустила микропроцессор 80286.

Американская фирма по производству вычислительной техники IBM, занимавшая до этого ведущее положение по выпуску больших ЭВМ, приступила к изготовлению профессиональных персональных компьютеров IBM PC с операционной системой MS DOS [5, c. 37].

Английской фирмой Inmos на основе идей профессора Оксфордского университета Тони Хоара о "взаимодействующих последовательных процессах" и концепции экспериментального языка программирования Дэвида Мэя был создан язык ОККАМ.

В 1985г. фирма Intel выпустила 32-битный микропроцессор 80386, состоящий из 250 тыс. транзисторов.

Сеймур Крей создал суперкомпьютер CRAY-2 производительностью 1 млрд. операций в секунду.

Фирма Microsoft выпустила первую версию графической операционной среды Windows.

Появление нового языка программирования C++.

А 1990г. фирма Microsoft выпустила Windows 3.0.

Тим Бернерс-Ли разработал язык HTML (Hypertext Markup Language - язык разметки гипертекста; основной формат Web-документов) и прототип Всемирной паутины.

Cray выпустил суперкомпьютер Cray Y-MP C90 с 16 процессорами и со скоростью 16 Гфлопс.

1991г.Фирма Microsoft выпустила ОС Windows 3.1.

Разработан графический формат JPEG

Филипп Циммерман придумал PGP, систему шифрования сообщений с открытым ключом.

В 1992 г. Появилась первая бесплатная операционная система с большими возможностями - Linux. Финский студент Линус Торвальдс (автор этой системы) решил поэкспериментировать с командами процессора Intel 386 и то, что получилось, выложил в Internet. Сотни программистов из разных стран мира стали дописывать и переделывать программу. Она превратилась в полнофункциональную работающую операционную систему. История умалчивает о том, кто решил назвать ее Linux, но как появилось это название - вполне понятно. "Linu" или "Lin" от имени создателя и "х" или "ux" - от UNIX, т.к. новая ОС была очень на нее похожа, только работала теперь и на компьютерах с архитектурой х86.

В 1993 г. Фирма Intel выпустила 64-разрядный микропроцессор Pentium, который состоял из 3,1 млн. транзисторов и мог выполнять 112 млн. операций в секунду.

3 Современное состояние и перспективы развития вычислительной техники

3.1 Современное состояние развития вычислительной техники

Информатика и её практические результаты становятся важнейшим двигателем НТП и развития человеческого общества. Главной тенденцией развития вычислительной техники - дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функц-х возможностей и характеристик.

Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet [20].

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

2. Встроенные сетевые и видеоинтерфейсы;

3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке.

Харак чертой компьютеров 5-го поколения обязано быть внедрение искусственного интеллекта и естественных языков общения.

Примерная характеристика компьютеров шестого поколения:

Характеристики VI поколение

Элементная база: Оптоэлектроника, криоэлектроника

Размер (габариты): карманные и меньше

Максимальное быстродействие процессора: неограниченно

Максимальный объем ОЗУ: ?

Периферийные: Ввод с голоса, голосовое общение, машинное «зрение» и «осязание» и пр.

Программное обеспечение: Интеллектуальные программные системы

Области применения: В творческой деятельности человека, искусственный интеллект [2, c. 28].

3.2 Перспективы развития вычислительной техники

Развитие вычислительной техники представляет собой постоянно сменяющие друг друга физические способы реализации логических алгоритмов – от механических устройств (вычислительная машина Бэббиджа) к ламповым (компьютеры 40-50-х годов Марк I и Марк II), затем к транзисторным и, наконец, к интегральным схемам. И уже на рубеже XXI века шли разговоры о скором достижении пределов применения полупроводниковых технологий и появлении вычислительных устройств, работающих на совершенно ином принципе. Все это свидетельствует о том, что прогресс не стоит на месте, и с течением времени ученые открывают новые возможности создания вычислительных систем, принципиально отличающихся от широко применяемых компьютеров. Существует несколько возможных альтернатив замены современных компьютеров. Это оптический компьютер, нейрокомпьютер, квантовый компьютер.

Оптический компьютер - это сложная информационная система, в которой носители сигналов не электроны, а фотоны (световой поток). Фотоны - это кванты, т.е. частицы электромагнитного излучения, каковым является и видимый нами свет. Оптический компьютер имеет невиданную производительность и совершенно иную, чем электронный компьютер, архитектуру. Самые скромные оценки показывают, что за 1 такт длительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных порядка 1 мегабайта и более. Самый впечатляющий элемент оптического компьютера - это голографический экран. В отличие от современных электронно-лучевого или жидкокристаллического экранов, голографический экран может иметь произвольный размер - например, во всю стену. Он может быть плоским или объемным [21, c. 24].

Оптический компьютер размером с ноутбук даст обычному пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности, в том числе такие, с которыми сегодня едва справляются мощные серверы. Специалисты с помощью оптического компьютера смогут обрабатывать данные геологоразведки прямо на месте исследования. Менеджер крупной компании или банка сможет работать с корпоративной базой, не выходя в открытую сеть, сколь велики бы ни были размеры базы данных, эта информация уместится в памяти оптического компьютера.

Нейрокомпьютер-устройство переработки информации на основе принципов работы естественных нейронных систем (нейрокомпьютеры - это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида - нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ).

Три основных преимущества нейрокомпьютеров:

- все алгоритмы нейроинформатики высокопараллельны, а это уже залог высокого быстродействия

- нейросистемы можно легко сделать очень устойчивыми к помехам и разрушениям

- устойчивые и надежные нейросистемы могут создаваться и из ненадежных элементов, имеющих значительный разброс параметров

В нейрокомпьютинге постепенно созревает новое направление, основанное на соединении биологических нейронов с электронными элементами. По аналогии с Software (программное обеспечение – «мягкий продукт») и Hardware (электронное аппаратное обеспечение – «твердый продукт»), эти разработки получили наименование Wetware «влажный продукт». Протезирование («умные протезы») и усиление естественных функций, в том числе – за счёт прямого подключения нервной системы человека к компьютерам (Нейрокомпьютерный) [4].

Квантовый компьютер – это компьютер, в котором в качестве битов выступают квантовые объекты, например спины электронов или ядер. Такой компьютер станет ещё одним шагом вперёд по сравнению с молекулярным. В квантовом компьютере вместо значений „0“ или „1“, как у классического бита, у нас будет квантовый бит (ку-бит). Кубит может принимать несколько различных значений – нормированных комбинаций двух основных состояний спина, что даёт большое число сочетаний (рис 12). Так, 32 кубита могут образовать около 4 миллиардов состояний, а при наборе из 300 кубитов квантовый компьютер в принципе способен найти 2300 возможных решений – это число примерно равно числу всех элементарных частиц во Вселенной. Уже разработаны алгоритмы для квантовых компьютеров, причём значительный вклад в эту работу внесён отечественными учёными.

Может показаться, что квантовый компьютер – это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

- необходимо обеспечить высокую точность измерений;

- внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений. Прототипы систем подобного рода находятся на стадии разработки.

В 1974 г. IBM получило вещество, молекула которого обладает свойствами диода. Из нее можно сделать аналог транзистора, а из двух - аналог триггера. Переключения из одного состояния в другой осуществляется с помощью света или слабого электрического поля. При этом тактовая частота процессора возрастет до 1 ТГц. Возможно построение белковой памяти, создание ЭВМ на ДНК. Молекулярный компьютер - это устройство, в котором вместо кремниевых чипов, применяемых в современных компьютерах, работают молекулы и молекулярные ансамбли. В основе новой технологической эры лежат так называемые «интеллектуальные молекулы». Такие молекулы (или молекулярные ансамбли) могут существовать в двух термодинамически устойчивых состояниях, каждое из которых имеет свои физические и химические свойства. Переводить молекулу из одного состояния в другое (переключать) можно с помощью света, тепла, химических агентов, электрического и магнитного поля и т.д. Фактически такие переключаемые бистабильные молекулы – это наноразмерная двухбитовая система, воспроизводящая на молекулярном уровне функцию классического транзистора.

ДНК-компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК [22, c. 65].

В 1994 году Леонард Адлеман, профессор университета Южной Калифорнии, продемонстрировал, что с помощью пробирки с ДНК можно весьма эффектно решать классическую комбинаторную «задачу о коммивояжере» (кратчайший маршрут обхода вершин графа). Классические компьютерные архитектуры требуют множества вычислений с опробованием каждого варианта. Метод ДНК позволяет сразу сгенерировать все возможные варианты решений с помощью известных биохимических реакций. Затем возможно быстро отфильтровать именно ту молекулу-нить, в которой закодирован нужный ответ.

Проблемы, возникающие при этом:

- требуется чрезвычайно трудоёмкая серия реакций, проводимых под тщательным наблюдением

- существует проблема масштабирования задачи.

Конечный биоавтомат Шапиро – технология многоцелевого ДНК-компьютера, разрабатываемая израильским профессором Эхудом Шапиро (en:Ehud Shapiro) из Вейцмановского института. Его основой являются уже известные свойства биомолекул, таких как ДНК и ферменты. Функционирование ДНК-компьютера сходно с функционированием теоретического устройства, известного в математике как «конечный автомат» или машина Тьюринга.

Нейроны-улитки на кремниевом чипе. Нельзя не сказать и о ещё одном направлении научного поиска. В Германии, в Институте Макса Планка, срастили неорганический кремниевый чип с нейронами улитки. Самое главное, что нейроны ответили на импульс, изначально поданный на кремниевую пластину, и наоборот. Уникальное сочетание химии, биологии и физики в полной гармонии!

Нанокомпьютер – вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры. Теория нанокомпьютеров до сих пор не имеет под собой логических обоснований.

Свой небольшой обзор того состояния, в котором сейчас находятся информационные технологии, хотелось бы закончить словами У. Черчилля, которые он произнёс, конечно, не о молекулярных компьютерах, а о переломе в военных действиях во Второй мировой войне: «Это ещё не конец, это даже не начало конца. Но возможно это – конец начала» [1, c. 69].

По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся, так как уже сегодня ведутся разработки новейших технологий, которые ранее никогда не применялись. Примерно в 2020-2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры, которые должны облегчить и упростить жизнь человека ещё в десятки раз! Компьютерная техника развивается с сумасшедшей скоростью и иногда очень сложно уследить или идти за ней в ногу. Но мы можем сказать с полной уверенностью, что высокие технологии – это наше будущее и это успех всего человечества. На этом процесс развития далеко не остановлен.

Заключение

Первой реально созданной машиной для выполнения арифметических действий в десятичной системе счисления можно считать счетную машину Паскаля. В 1642 году Паскаль продемонстрировал ее работу. Машина выполняла суммирование чисел (восьмиразрядных) c помощью колес, которые при добавлении единицы поворачивались на 360 и приводили в движение следующее по старшинству колесо всякий раз, когда цифра 9 должна была перейти в значение 10. Машина Паскаля получила известность во многих странах, было изготовлено более 50 экземпляров машин.

Впрочем, еще до Паскаля машину, механически выполняющую арифметические операции, изобразил в эскизах Леонардо да Винчи (1452-1519). Суммирующая машина по его эскизам выполнена в наши дни и доказала свою работоспособность.

В средние века (расцвет механики) было предложено и выполнено много различных вариантов арифметических машин: Морлэнд (1625-1695), К. Перро (1613-1688), Якобсон, Чебышев и др. Первую машину, с помощью которой можно было не только складывать, но и умножать и делить разработал Г. Лейбниц (1646-1716). Однако большинство подобных машин изготавливались авторами в единичных экземплярах. Удачное решение инженера В. Однера, разработавшего колесо с переменным числом зубьев, позволило почти век спустя серийно выпускать арифмометры (например, «Феликс» Курского завода «Счетмаш»), являвшиеся основным средством вычислений вплоть до эпохи ПЭВМ и калькуляторов.

Все упомянутые выше механизмы обладали одной особенностью – могли автоматически выполнять только отдельные действия над числами, но не могли хранить промежуточные результаты и, следовательно, выполнять последовательность действий.

Первой вычислительной машиной, реализующей автоматическое выполнение последовательности действий, можно считать разностную машину великого англичанина Ч. Бэббиджа (1792-1871). В 1819 году он изготовил ее для расчета астрономических и морских таблиц. Машина обеспечивала хранение необходимых промежуточных значений и выполнение последовательности сложений для получения значения функции. В дальнейшем Бэббидж предложил т.н. аналитическую машину, предназначенную для решения любых вычислительных задач. При желании в аналитической машине Бэббиджа можно найти прообразы всех основных устройств современной ЭВМ: арифметическое устройство («мельница»), память («склад»), устройство управления (на перфокартах), позволяющее выбирать различные пути решения в зависимости от значений исходных данных и промежуточных результатов. Проект аналитической машины Бэббиджа так и не был реализован – из-за несоответствия идеи и элементной базы.

Даже выпускаемые большими сериями электрические релейные машины Холлерита (1860-1929) – табуляторы – не произвели переворота в средствах обработки информации вплоть до 70-х годов прошлого века.

Идеи аналитической машины Бэббиджа были использованы в релейных машинах, выпускавшихся в 30 – 40-х годах ХХ века. Теоретической основой разработки релейно-контактных схем явился аппарат булевой алгебры, который в дальнейшем использовался для синтеза схем ЭВМ. Однако и электрическое реле как элементная база вычислительной техники не удовлетворяли потребностям этой техники по всем основным параметрам (быстродействие, надежность, потребляемая мощность, стоимость, габариты и др.)

Только освоение электронных схем в качестве элементной базы положило начало действительно массовому внедрению сначала вычислительной, а потом и информационной техники во все сферы человеческой деятельности. Первые электронные цифровые вычислительные машины (ЭЭВМ) были разработаны и выпущены на рубеже 40 – 50-х годов прошлого века в США, Англии и чуть позднее – в СССР.

Информационные технологии развиваются, хоть и не с геометрической прогрессией, но тем не менее достаточно стремительно. Вычислительная техника становится все более и более изощренной, вместе с тем становясь совершеннее. Естественно становится возможным реализовывать наиболее сложные задачи, которые в раннем времени даже не представлялось возможным решить; что важнее, многократно повышается точность вычислений. Самые совершенные вычислительные системы устанавливаются на таких видах техники как космические зонды, спутники, научно-исследовательские модули, и, конечно широко эксплуатируются на Международной Космической Станции [5, c. 86]. Подсчитываются огромные расстояния между различными небесными телами, и прочие величины. Но, все еще впереди.

Список литературы

  1. Апокин И. А. История вычислительной техники. - М.: Наука, 1990. – 264 с.
  2. Владимиров В. Развитие вычислительной техники // Домашний лицей. – 2003. - N 1. – с. 46-57.
  3. Гаков В. Ископаемые вычислительные // Коммерсантъ Деньги. – 2001. - N 1/2. – с. 41-45.
  4. Дубровский А. Чтим прошлое, работаем на будущее. К 60-летию отечественной вычислительной техники // Наука и жизнь. - 2008. - N 6. – с. 60-61.
  5. Зубов Ю. И. История создания цифровых электронных вычислительных машин // История науки и техники. – 2002. - N 1. - С. 2-11.
  6. Зубрилин А. А. Факультативные занятия по теме "История развития вычислительной техники" // Информатика и образование. – 2006. - N 4. - С. 2-12.
  7. Зубрилин А. А. Факультативные занятия по теме "История развития вычислительной техники" // Информатика и образование. – 2006. - N 6. - С. 27-35.
  8. Ицкович Э. Л. История развития отечественных вычислительных средств автоматизации // Промышленные АСУ и контроллеры. – 2007. - N 6. - С. 57-60.
  9. Ким А. К. От истоков к перспективам вычислительной техники // История науки и техники. - 2008. - N 5. - С. 2-4.
  10. Курылева И. Когда машины были большими // Наука и жизнь. – 2003. - N 11. - С. 88-91.
  11. Кэмпбелл-Келли М. Создание вычислительной техники // В мире науки. - 2009. - N 11. - С. 42.
  12. Норенков И. П. Краткая история вычислительной техники и информационных технологий. - М. : Новые технологии : Информ. технологии , 2005. - 32 с.
  13. Свердловская ОУНБ; КХ; Формат Б; Инв. номер 2264939-КХ
  14. Палладин А. Прошлое и будущее микропроцессора // История науки и техники. - 2002. - N 1. - С. 15-20.
  15. Панчул Ю. Рождение и смерть советских компьютеров // Новое время. - 2009. - N 11. - С. 54-57.
  16. Прохоров А. Итоги тысячелетия, столетия, года // КомпьютерПресс. – 2000. - N 1. - С. 9-20.
  17. Ревич Ю. Наследники Бэббиджа // Домашний компьютер. – 2003. - N 1. - С. 90-95.
  18. Рудометов Е. Компьютеры СССР // Компьютер-mouse. - 2008. - N 2. - С. 17-24.
  19. Сергеев И. Н. Музей истории вычислительной техники // Математика в школе. - 2010. - N 9. - С. 9-12.
  20. Смолевицкая М. Э. Круглый стол "ЭВМ на страже Родины : в космосе и на земле (из истории развития специализированных ЭВМ военного назначения (1959-1990 гг. ) " // Вопросы истории естествознания и техники. – 2004. - N 3. - С. 160-165.
  21. Топчеев Ю. И. История создания цифровых механических и электромеханических вычислительных машин // История науки и техники. - 2002. - N 2. - С. 48-58.
  22. Топчеев Ю. И. Об истории создания суперЭВМ // История науки и техники. - 2002. - N 5. - С. 37-41.