Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Состав и свойства вычислительных систем. Информационное и математическое обеспечение вычислительных систем

Содержание:

Введение

Эволюция технического обеспечения, которое включает в себя аппаратные средства, средства коммуникации, программное обеспечение, проходит неравномерно, скачкообразно. Развитие компьютерной техники пока происходит в геометрической прогрессии. Каждые три-четыре года происходит удвоение производительности компьютеров.

Появление любого нового направления в вычислительной технике определяется требованиями компьютерного рынка. Поэтому перед разработчиками стоят несколько разноплановых целей:

-отношение стоимость/производительность;

-надежность и отказоустойчивость;

-масштабируемость;

-совместимость и мобильность программного обеспечения.

Современные технические средства обеспечения управления информационными ресурсами по своему составу и функциональным возможностям весьма разнообразны, это и средства вычислительной техники (предназначена для реализации комплексных технологий обработки и хранения информации и является базой интеграции всех современных технических средств обеспечения управления информационными ресурсами) и средства коммуникационной техники (предназначена для реализации технологий передачи информации) и средства организационной техники (предназначена для реализации технологий хранения, представления и использования информации, а также для выполнения различных вспомогательных операций в рамках тех или иных технологий информационной поддержки управленческой деятельности).

Целью данной курсовой работы является изучение организации технического обеспечения автоматизированных информационных систем (АИС). Также мы рассмотрим современные тенденции развития информационного и математического обеспечения вычислительных систем, выявим основные требования к характеристикам современных АИС и изучим применение технических средств АИС.

Глава 1. Состав и свойства вычислительных систем

1.1 Состав вычислительных систем

Состав вычислительной системы называется конфигурацией. Аппаратные и программные средства вычислительной техники принято рассматривать отдельно. Соответственно, отдельно рассматривают аппаратную конфигурацию вычислительных систем и их программную конфигурацию. Такой принцип разделения имеет для информатики особое значение, поскольку очень часто решение одних и тех же задач может обеспечиваться как аппаратными, так и программными средствами. Критериями выбора аппаратного или программного решения является производительность и эффективность. Обычно принято считать, что аппаратные решения в среднем оказываются дороже, зато реализация программных решений требует более высокой квалификации персонала.

Программное и аппаратное обеспечение в компьютере работают в неразрывной связи и в непрерывном взаимодействии. Несмотря на то что мы рассматриваем эти две категории отдельно, нельзя забывать, что между ними существует диалектическая связь, и раздельное их рассмотрение является по меньшей мере условным.

1.2 Аппаратное обеспечение.

К аппаратному обеспечению вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию – аппаратную конфигурацию, необходимую для исполнения конкретных видов работ, можно собирать из готовых узлов и блоков.

Согласование между отдельными узлами и блоками выполняют с помощью переходных аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы в вычислительной технике называют протоколами. Таким образом, протокол – это совокупность технических условий, которые должны быть обеспечены разработчиками устройств для успешного согласования их работы с другими устройствами.

Аппаратные средства ВС − это устройства и приборы. По способу расположения относительно центрального процессора (Central Processing Unit, CPU) различают внутренние (звуковая карта, винчестер и т.д.) и внешние устройства.

Ниже мы рассмотрим устройство персонального компьютера более подробно.

Аппаратные интерфейсы по способу передачи данных условно подразделяются на 2 большие группы: последовательные и параллельные. Через последовательный интерфейс данные передаются последовательно, бит за битом, а через параллельный - одновременно группами битов. Количество битов, участвующий в одной посылке, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают 1 байт за 1 цикл.

Параллельные интерфейсы имеют более сложное устройство, чем последовательные, но обеспечивают более высокую производительность. Их применяют там, где нужна высокая скорость передачи данных: для подключения принтеров, сканеров и т.п. Производительность параллельных интерфейсов измеряют байтами в секунду, кбайт/с, Мбайт/с.

Итак, рассмотрим основные устройства, входящие в состав ПК:

Минимальный комплект ПК составляют:

системный блок;

монитор (дисплей);

клавиатура;

манипулятор «мышь».

Системный блок ПК содержит основные устройства компьютера: процессор и сопроцессор, оперативную память, системную шину. Идея ПК состоит в том, что для обеспечения гибкости и наращиваемости структуры все основные устройства компьютера подключены к общей информационной шине (системной шине).

Накопители на гибких дисках получили адреса А: и В:, первый накопитель на жестких дисках получил адрес С: и обычно используется для резиденции операционной системы, последующие накопители (разделы запоминающего пространства одного и того же накопителя, сетевые адреса) адресуются D:, E: и т.д.

Процессор. Самым главным элементом компьютера является микропроцессор – небольшая (в несколько сантиметров) электронная схема, выполняющая все вычисления и обработку информации.

Оперативная память. Обеспечивает оперативное хранение программ и данных. Имеет высокое быстродействие и прямую адресацию до одного байта. Хранит данные только пока компьютер включен.

Контроллеры и шина. Обеспечивают обмен информацией между оперативной памятью и внешними устройствами. Для каждого внешнего устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером или адаптером. Все контроллеры и адаптеры взаимодействуют с процессором через системную магистраль передачи данных (шину). Единообразие подключения внешних устройств делает ПК весьма гибким по конфигурации.

Электронные платы. Основной платой ПК является системная плата (материнская). На ней устанавливаются микропроцессор, сопроцессор, оперативная память, шина. Контроллеры и адаптеры выполняются на отдельных платах, которые вставляются в унифицированные разъемы системной платы – слоты. Таким образом, наличие свободных слотов позволяет подключать дополнительные устройства. Также просто решается проблема совершенствования компьютера. Например, для замены устаревшего адаптера монитора на новый достаточно заменить соответствующий контроллер в слоте.

Накопители на дискетах. Обычно ПК содержит один дисковод для дискет 3,5 дюйма емкостью 1,4 Мбайта (диск А:). На данный момент уже устаревшая система хранения информации.

Накопители на жестких дисках. Обычно ПК содержит один дисковод на жестких дисках, который разбивается на несколько разделов С:, D:,E: и т.д. Скорость работы диска характеризуется двумя основными параметрами:

Мониторы. Предназначены для вывода на экран текстовой и графической информации. Мониторы бывают монохромными и цветными, могут работать в текстовом и графическом режимах.

Связующим звеном между монитором и процессором является видеопамять адаптера монитора, в которой для каждой точки (пиксела) экрана хранится цвет и яркость.

Клавиатура. Средство ввода информации. Содержит группу клавиш для ввода управляющей информации – функциональные клавиши, и собственно информационные клавиши.

Принтеры. Предназначены для вывода информации на бумажные носители.

Устройства для чтения компакт-дисков (CD-ROM). Информация на компакт-дисках кодируется посредством чередования отражающих и не отражающих свет участков на поверхности (подложке) диска. Подложка выполняется из золота, а изображение наносится лучом лазера. Прозрачное покрытие защищает подложку от механических повреждений.

Скорость считывания информации с CD дисков значительно ниже, чем с жестких дисков. Однако в силу надежности и способности хранить500-600 М байт информации они нашли очень широкое распространение для хранения эталонов пакетов системных программ, информационных и мультимедиа энциклопедий и т.д.

Диски CD-ROM позволяют производить только считывание информации.

Их модификация CD-R (recordable) позволяет перезаписывать информацию.

Мышь. Используется для работы с графическим экраном практически всех приложений и системных программ.

Модем. Устройство, обеспечивающее обмен с другими компьютерами через телефонную сеть.

Сканер. Считывает графическую и текстовую информацию в компьютер. При вводе текстов сервисные программы позволяют распознать текст и преобразовать его в стандартный компактный текстовый формат. Сканеры отличаются разрешающей способностью, форматом сканируемого изображения, количеством воспринимаемых цветов.

Аудиоплата. Вместе с колонками и микрофоном обеспечивает ввод – вывод звука. Специальные программы позволяют редактировать звуковые (речевые) сигналы.

Трекбол. Встроенный манипулятор в форме шара, выполняющий в переносных персональных компьютерах роль мыши.

Сетевой адаптер. Позволяет подключать компьютер в сеть. Обеспечивает доступ к данным и программам других компьютеров сети.

2. Программное обеспечение.

Программы – это упорядоченные последовательности команд. Состав программного обеспечения вычислительной системы называют программной конфигурацией. Между программами, как и между физическими узлами и блоками существует взаимосвязь – многие программы работают, опираясь на другие программы более низкого уровня, то есть, мы можем говорить о межпрограммном интерфейсе. Уровни программного обеспечения представляют собой пирамидальную конструкцию. Каждый следующий уровень опирается на программное обеспечение предшествующих уровней. Такое членение удобно для всех этапов работы с вычислительной системой, начиная с установки программ до практической эксплуатации и технического обслуживания. Обратите внимание на то, что каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с программным обеспечением базового уровня не способна выполнять большинство функций, но позволяет установить системное программное обеспечение.

Базовый уровень. Самый низкий уровень программного обеспечения представляет базовое программное обеспечение. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в специальных микросхемах, называемых постоянными запоминающими устройствами (ПЗУ – Read Only Memory, ROM). Программы и данные записываются («прошиваются») в микросхемы ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.

Системный уровень. Системный уровень – переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспечением, то есть выполняют «посреднические» функции.

От программного обеспечения этого уровня во многом зависят эксплуатационные показатели всей вычислительной системы в целом. Так, например, при подключении к вычислительной системе нового оборудования на системном уровне должна быть установлена программа, обеспечивающие для других программ взаимосвязь с этим оборудованием. Конкретные программы, отвечающие за взаимодействие с конкретными устройствами, называются драйверами устройств – они входят в состав программного обеспечения системного уровня.

Другой класс программ системного уровня отвечает за взаимодействие с пользователем. Именно благодаря им он получает возможность вводит данные в вычислительную систему, управлять ее работой и получать результат в удобной для себя форме. Эти программные средства называют средствами обеспечения пользовательского интерфейса. От них напрямую зависит удобство работы с компьютером и производительность труда на рабочем месте.

Совокупность программного обеспечения системного уровня образует ядро операционной системы компьютера. Полное понятие операционной системы мы рассмотрим несколько позже, а здесь только отметим, что если компьютер оснащен программным обеспечением системного уровня, то он уже подготовлен к установке программ более высоких уровней, к взаимодействию программных средств с оборудованием и, самое главное, к взаимодействию с пользователем.

Служебный уровень. Программное обеспечение этого уровня взаимодействует как с программами базового уровня, так и с программами системного уровня. Основное назначение служебных программ (их также называют утилитами) состоит из автоматизации работ по проверке, наладке и настройке компьютерной системы. Во многих случаях они используются для расширения или улучшения функция системных программ.

Прикладной уровень. Программное обеспечение прикладного уровня представляет собой комплекс прикладных программ, с помощью которых на данном рабочем месте выполняются конкретные задания. Спектр этих заданий необычайно широк – от производственных до творческих и развлекательно-обучающих. Огромный функциональный диапазон возможный приложений средств вычислительной техники обусловлен наличием прикладных программ для разных видов деятельности.

Программное обеспечение (ПО) современных персональных компьютеров включает как важнейшие составные части:

системное ПО, основная составляющая которого – операционная система (ОС);

инструментальные системы (системы программирования), основывающиеся на языках программирования;

прикладное ПО, в состав которого входят интегрированные пакеты и пакеты прикладных программ.

Число разновидностей системных программ велико, рассмотрим лишь некоторые из них.

Операционная система. Операционная система – программа, которая загружается при включении компьютера. Она осуществляет диалог с пользователем, управление компьютером, его ресурсами (оперативной памятью, местом на дисках и т.д.), запускает другие (прикладные) программы на выполнение. Операционная система обеспечивает пользователю удобный способ общения (интерфейс) с устройствами компьютера.

Драйверы. Важным классом системных программ являются программы-драйверы, обеспечивающие подключение к компьютеру внешних устройств (клавиатура, жесткие диски, мышь и т.д.) и их управление.

Вспомогательные программы. К вспомогательным программам можно отнести:

программы-архиваторы, которые позволяют за счет применения специальных методов «упаковки» информации сжимать информацию на дисках, т.е. создавать копии нескольких файлов меньшего размера;

антивирусные программы, предназначенные для предотвращения заражения компьютерным вирусом и ликвидации последствия заражения;

коммуникационные программы, предназначенные для организации обмена информацией между компьютерами;

программы для управления памятью, обеспечивающие гибкое использование оперативной памяти компьютера;

программы для оптимизации дисков, обеспечивающие быстрый доступ к информации на диске за счет оптимизации размещений данных на диске и т.д.

Современные системы программирования для персональных компьютеров предоставляют пользователю мощные и удобные средства для разработки программ. В них входят:

компилятор, преобразующий программу на язык машинных кодов;

библиотека подпрограмм, которыми могут пользоваться программисты;

объектно-ориентированная среда разработки программ;

вспомогательные программы, например отладчики.

Для персональных компьютеров разработаны и используются сотни тысяч различных прикладных программ. В качестве примера приведены лишь некоторые из них.

Редакторы текстов и издательские системы предоставляют возможность подготавливать документы на компьютере (Microsoft Word).

Табличные процессоры обеспечивают работу с большими таблицами чисел (Microsoft Excel).

Системы управления базами данных (СУБД) позволяют управлять большими информационными массивами – базами данных (Microsoft Access, Microsoft SQL Server).

Графические редакторы позволяют создавать и редактировать картинки на экране компьютера (Paint, PhotoShop, Corell Draw).

Системы автоматизированного проектирования (САПР) позволяют осуществлять черчение и конструирование различных механизмов с помощью компьютера (AutoCad).

1.2 Свойства вычислительных систем

Основополагающие принципы (параллелизма, программируемости, однородности) и принципы модульности и близкодействия позволяют достичь полноты архитектурных свойств в вычислительных системах.

Важнейшие свойства архитектуры ВС:

-Под масштабируемостью ВС понимается их способность к наращиванию и сокращению ресурсов, возможность варьирования производительности. Сложность (трудоемкость) задач, решаемых на вычислительных средствах, постоянно растет. Для сохранения в течении длительного времени за вычислительной системой способности быть адекватным средством решения сложных задач необходимо, чтобы она обладала архитектурным свойством масштабируемости. Это означает, в частности, что производительность, достигнутую ВС на заданном количестве вычислителей, можно увеличить, добавив еще один или несколько вычислителей. Выполнение этого свойства ВС гарантируется принципами модульности, локальности, децентрализованности и распределенности.

-Свойство наращиваемости производительности предоставляет потенциальную возможность решать задачи любой априори заданной сложности. Однако для практической реализации этой возможности требуется, чтобы алгоритм решения сложной задачи удовлетворял условию локальности, а межмодульные пересылки информации слабо влияли на время решения задачи. Это может быть достигнуто за счет крупноблочного распараллеливания сложных задач и (или) аппаратурных средств, позволяющих совместить межмодульные обмены информацией с вычислениями.

-Универсальность ВС.

Принято считать, что ЭВМ (основанные на модели вычислителя) являются алгоритмически универсальными, если они обладают способностью (без изменения своих структур) реализовать алгоритм решения любой задачи. С другой стороны, ВС – это коллектив вычислителей, каждый из которых обладает алгоритмической универсальностью, следовательно, и система универсальна (в общепринятом смысле).

В вычислительных системах могут быть реализованы не только любые алгоритмы, доступные ЭВМ, но и параллельные алгоритмы решения сложных задач. Последнее следует из определений модели коллектива вычислителей и, в частности, алгоритма функционирования ВС.

Структурная универсальность ВС– следствие воплощения архитектурных принципов коллектива вычислителей, в частности, принципа программируемости структуры. Суть этого принципа – возможность автоматически (программно) порождать специализированные (проблемно-ориентированные) виртуальные конфигурации, которые адекватны структурам и параметрам решаемых задач.

Таким образом, вычислительные системы сочетают в себе достоинства цифровой техники, где процесс вычислений в основном задаётся алгоритмически (точнее: программно) и аналоговой техники, где процесс вычислений предопределяется структурными схемами.

Структурная универсальность позволяет говорить и о специализированности ВС: для каждой задачи допустима автоматическая настройка такой конфигурации из ресурсов ВС, которая наиболее адекватна алгоритму решения задачи. Итак, вычислительная система – это средство, в котором диалектически сочетаются противоположные свойства универсальности и специализированности.

-Производительность.

В отличие от ЭВМ, построенных на основе модели вычислителя, ВС не имеют принципиальных ограничений в наращивании производительности. Рост производительности в них достигается за счёт не только повышения физического быстродействия микроэлектронных элементов, а главным образом увеличения числа вычислителей. Следует подчеркнуть, что благодаря свойству однородности наращиваемость ВС осуществляется простым подключением дополнительных вычислений без конструктивных изменений первоначального состава системы. При этом достигается простота настройки программного обеспечения на заданное число вычислителей в системе. На основании последнего обеспечивается совместимость ВС различной производительности.

-Реконфигурируемость. Структурная и функциональная гибкость ВС вытекает из широких возможностей систем по статической и динамической реконфигурации. Статическая реконфигурация ВС обеспечивается: варьированием числа вычислителей, их структуры и состава; выбором для вычислителей числа полюсов для связи c другими вычислителями; возможностью построения структур в виде графов, относящихся к различным классам; допустимостью применения в качестве связей каналов различных типов, различной физической природы и различной протяжённости и т.п. Благодаря приспособленности ВС к статической реконфигурации достигается адаптация системы под область применения на этапе её формирования.

Динамическая реконфигурация ВС достигается возможностью образования в системах таких подсистем, структуры и функциональные организации которых адекватны входной мультипрограммной ситуации и структурам решаемых задач. Следовательно, способность ВС к динамической реконфигурации приводит к её высокой универсальности, при которой достигается заданный уровень производительности при решении широкого класса задач, реализуются известные в вычислительной технике режимы функционирования (коллективное пользование, пакетная обработка и др.), способы управления вычислительным процессом (централизованный, децентрализованный и др.), структурные схемы (изолированные вычислительные машины, системы из нескольких процессоров и одной ЭВМ, системы из одной ЭВМ и нескольких устройств памяти и т.п.) и способы обработки информации (конвейерный, матричный, распределённый и др.).

-Надёжность и живучесть вычислительных систем. Данные два понятия семантически близки, оба призваны характеризовать архитектурные способности ВС по выполнению возглавляемых на них функций. Однако каждое из них отражает специфические особенности ВС по использованию исправных ресурсов при переработке информации.

Под надёжностью ВС понимается её способность к автоматической (программной) настройке и организации функционирования таких структурных схем, которые при отказах и восстановлении вычислителей обеспечивают заданный уровень производительности или, говоря иначе, возможность использовать фиксированное число исправных вычислителей (при реализации параллельных программ решения сложных задач). Это понятие характеризует возможности вычислительных систем по переработке информации при наличии фиксированной структурной избыточности (представленной частью вычислителей) и при использовании параллельных программ с заданным числом ветвей.

Под живучестью ВС понимается свойство программной настройки и организации функционирования таких структурных схем, которые в условиях отказов и восстановления вычислителей гарантируют при выполнении параллельной программы производительность в заданных пределах или возможность использования всех исправных вычислителей. Понятие живучести вычислительных систем характеризует их способности по организации отказоустойчивых вычислений или, говоря иначе, по реализации параллельных программ, допускающих варьирование числа ветвей в известных пределах.

При рассмотрении живучести ВС выделяют полный и частичный отказы. Под полным отказом ВС понимается событие, состоящее в том, что система теряет способность выполнять параллельную программу с переменным числом ветвей. Частичным отказом считают событие, при котором имеют место отказы вычислителей, однако сохраняется возможность реализации на ВС параллельной программы с переменным числом ветвей. Полный отказ делает производительность системы равной нулю, а частичный отказ приводит лишь к некоторому снижению производительности, т.е. к увеличению времени реализации параллельной программы с переменным числом ветвей. Понятия полного и частичного восстановления ВС очевидны.

Следует подчеркнуть, что в живучей ВС в любой момент функционирования используется суммарная производительность всех исправных вычислителей. Из последнего следует, что программы решения задач должны обладать свойством адаптируемости (под число исправных вычислителей) и иметь информационную избыточность.

-Самоконтроль и самодиагностика вычислительных систем. Организация надёжного и живучего функционирования вычислительных систем связана с контролем правильности их работы и с локализацией неисправностей в них. В системах–коллективах вычислителей может быть применён нетрадиционный подход к контролю и диагностике:

· В качестве контрольно-диагностического ядра ВС могут быть использованы любые исправные вычислители и в пределе ядро любого произвольно выбранного вычислителя,

· Выбор ядра системы и определение её исправности могут быть произведены автоматически (с помощью средств ВС).

Предлагаемый подход позволяет говорить о самоконтроле и самодиагностике ВС. Заключение об исправности или неисправности отдельных вычислителей системы принимается коллективно всеми вычислителями на основе сопоставления их индивидуальных заключений об исправности соседних с ними вычислителей.

Глава 2. Информационное и математическое обеспечение вычислительных систем

2.1 Информационное обеспечение вычислительных систем

Наряду с аппаратным и программным обеспечением средств вычислительной техники в некоторых случаях целесообразно рассматривать информационное обеспечение.

Информационное обеспечение — это совокупность программ и предварительно подготовленных данных, необходимых для работы данных программ. Рассмотрим, например, систему автоматической проверки орфографии в редактируемом тексте. Ее работа заключается в том, что лексические единицы исходного текста сравниваются с заранее заготовленным эталонным массивом данных (словарем). В данном случае для успешной работы системы необходимо иметь кроме аппаратного и программного обеспечения специальные наборы словарей, подключаемые извне. Это пример информационного обеспечения вычислительной техники. В специализированных компьютерных системах (бортовых компьютерах автомобилей, судов, ракет, самолетов, космических летательных аппаратов и т. п.) совокупность программного и информационного обеспечения называют математическим обеспечением Как правило, оно «жестко» записывается в микросхемы ПЗУ и может быть изменено только путем замены ПЗУ или его перепрограммирования на специальном оборудовании.

Универсальность компьютеров основана на том, что любые типы данных представляются в нем с помощью универсального двоичного кодирования. Работа компьютерной системы протекает в непрерывном взаимодействии аппаратных и программных средств. Физически аппаратные средства согласуются друг с другом с помощью механических и электрических разъемов и контактов. Логически они согласуются друг с другом с помощью программ, называемых драйверами устройств.

Понятие об информации. Несмотря на то, что с понятием информации мы сталкиваемся ежедневно, строгого и общепризнанного ее определения до сих пор не существует, поэтому вместо определения обычно используют понятие об информации. Понятия, в отличие от определений, не даются однозначно, а вводятся на примерах, причем, каждая научная дисциплина делает это по-своему, выделяя в качестве основных компонентов те, которые наилучшим образом соответствуют ее предмету и задачам. При этом типична ситуация, когда понятие об информации, введенное в рамках одной научной дисциплины, может опровергаться конкретными примерами и фактами, полученными в рамках другой науки. Для информатики как технической науки понятие информации не может основываться на таких антропоцентрических понятиях, как знание, и не может опираться только на объективность фактов и свидетельств. Средства вычислительной техники обладают способностью обрабатывать информацию автоматически, без участия человека, и ни о каком знании или незнании здесь речь идти не может. Эти средства могут работать с искусственной, абстрактной и даже с ложной информацией, не имеющей объективного  отражения ни в природе, ни в обществе.

По окончании процесса свойства информации переносятся на свойства новых данных, то есть свойства методов могут переходить на свойства данных. С точки зрения информатики наиболее важными представляются следующие свойства: объективность, полнота, достоверность, адекватность, доступность и актуальность информации.

- Объективность и субъективность информации. Понятие объективности информации является относительным. Это понятно, если учесть, что методы являются субъективными. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент. Так, например, принято считать, что в результате наблюдения фотоснимка природного объекта или явления образуется более объективная информация, чем в результате наблюдения рисунка того же объекта, выполненного человеком. В ходе информационного процесса степень объективности информации всегда понижается.

-Полнота информации. Полнота информации во многом характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся. Чем полнее данные, тем шире диапазон методов, которые можно использовать, тем проще подобрать метод, вносящий минимум погрешностей в ход информационного процесса.

-Достоверность информации. Данные возникают в момент регистрации сигналов, но не все сигналы являются «полезными» — всегда присутствует какой-то уровень посторонних сигналов, в результате чего полезные данные сопровождаются определенным уровнем «информационного шума». Если полезный сигнал зарегистрирован более четко, чем посторонние сигналы, достоверность информации может быть более высокой. При увеличении уровня шумов достоверность информации снижается. В этом случае для передачи того же количества информации требуется использовать либо больше данных, либо более сложные методы.

-Адекватность информации — это степень соответствия реальному объективному состоянию дела. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако и полные, и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.

-Доступность информации — мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Отсутствие доступа к данным или отсутствие адекватных методов обработки данных приводят к одинаковому результату: информация оказывается недоступной. Отсутствие адекватных методов для работы с данными во многих случаях приводит к применению неадекватных методов, в результате чего образуется неполная, неадекватная или недостоверная информация.

-Актуальность информации — это степень соответствия информации текущему моменту времени. Нередко с актуальностью, как и с полнотой, связывают коммерческую ценность информации. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска (или разработки) адекватного метода для работы с данными может приводить к такой задержке в получении информации, что она становится неактуальной и ненужной. На этом, в частности, основаны многие современные системы шифрования данных с открытым ключом.

-Данные — диалектическая составная часть информации. Они представляют собой зарегистрированные сигналы. При этом физический метод регистрации может быть любым: механическое перемещение физических тел, изменение их формы или параметров качества поверхности, изменение электрических, магнитных, оптических характеристик, химического состава и (или) характера химических связей, изменение состояния электронной системы и многое другое. В соответствии с методом регистрации данные могут храниться и транспортироваться на носителях различных видов. Самым распространенным носителем данных, хотя и не самым экономичным, по-видимому, является бумага. На бумаге данные регистрируются путем изменения оптических характеристик ее поверхности. Изменение оптических свойств (изменение коэффициента отражения поверхности в определенном диапазоне длин волн) используется также в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием (CD-ROM). В качестве носителей, использующих изменение магнитных свойств, можно назвать магнитные ленты и диски. Регистрация данных путем изменения химического состава поверхностных веществ носителя широко используется в фотографии. От этих свойств носителя нередко зависят такие свойства информации, как полнота, доступность и достоверность. Например, мы можем рассчитывать на то, что в базе данных, размещаемой на компакт-диске, проще обеспечить полноту информации, чем в аналогичной по назначению базе данных, размещенной на гибком магнитном диске, поскольку в первом случае плотность записи данных на единице длины дорожки намного выше. Для обычного потребителя доступность информации в книге заметно выше, чем той же информации на компакт-диске, поскольку не все потребители обладают необходимым оборудованием. И наконец, известно, что визуальный эффект от просмотра слайда в проекторе намного больше, чем от просмотра аналогичной иллюстрации, напечатанной на бумаге, поскольку диапазон яркостных сигналов в проходящем свете на два-три порядка больше, чем в отраженном. Задача преобразования данных с целью смены носителя относится к одной из важнейших задач информатики. В структуре стоимости вычислительных систем устройства для ввода и вывода данных, работающие с носителями информации, составляют до половины стоимости аппаратных средств.

В структуре возможных операций с данными можно выделить основные:

• сбор данных — накопление информации с целью обеспечения достаточной полноты для принятия решений;

• формализация данных — приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;

• фильтрация данных — отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать;

• сортировка данных — упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;

• архивация данных — организация хранения данных в удобной и легкодоступной форме, служит для снижения экономических затрат по хранению данных и повышает общую надежность информационного процесса в целом;

• защита данных — комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;

• транспортировка данных — прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя — клиентом;

• преобразование данных — перевод данных из одной формы в другую или из одной структуры в другую. Преобразование данных часто связано с изменением типа носителя: например, книги можно хранить в обычной бумажной форме, но можно использовать для этого и электронную форму, и микрофотопленку.

-Кодирование данных двоичным кодом для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления — для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа.  Своя система существует и в вычислительной технике — она называется двоичным, кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски — binary digit или, сокращенно, bit (бит). Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т. п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия: 00 01 10. Тремя битами можно закодировать восемь различных значений: 000 001 010 011 100 101 110 111.

2.2 Математическое обеспечение

    Все методы формализации задач управления, в том числе и те, на основе которых строится рациональная эксплуатация технического обеспечения информационных систем, принято называть математическим обеспечением.

Математическое обеспечение – совокупность математических методов, моделей, алгоритмов обработки информации, используемых при решении задач в информационной системе (функциональных и автоматизации проектирования информационных систем). К средствам математического обеспечения относятся:

·     средства моделирования процессов управления;

·     типовые задачи управления;

·     методы математического программирования, математической статистики, теории массового обслуживания и др.

Математическое обеспечение является составной частью программного обеспечения ИС. Прикладные и обеспечивающие программы формируются, прежде всего, на базе математических методов. В тех случаях, когда для решения той или иной актуальной задачи не удается подобрать математический метод, используются эвристические алгоритмы.

При этом следует помнить, что каждый из методов может быть применен для решения различных по специфике задач пользователей. И наоборот: одна и та же задача может решаться с помощью различных методов. Весь набор математических алгоритмов, использующихся для решения экономических задач, принято называть экономико-матема­тическими методами.

Важнейшие экономико-математические методы представлены в виде некоторых укрупненных группировок:

-Линейное программирование – линейное преобразование переменных в системах линейных уравнений. Сюда следует отнести: симплекс-метод, распределительный метод, метод разрешающих множителей, статический матричный метод решения материальных балансов.

-Дискретное программирование представлено двумя классами методов: локализационные и комбинаторные методы. К локализационным относятся методы линейного целочисленного программирования. К комбинаторным – метод ветвей и границ, который используется для построения графиков производства и т.п.

-Математическая статистика применяется для корреляционного, регрессионного и дисперсионного анализов экономических явлений и процессов. Корреляционный анализ применяется для установления тесноты связи между двумя или более стохастически независимыми явлениями или процессами.

Регрессионный анализ устанавливает зависимость случайной величины от неслучайного аргумента. Дисперсионный анализ используется для установления зависимости результатов наблюдений от одного или нескольких факторов в целях выявления важнейших. Методы математической статистики используются также для прогностических экономических расчетов.

-Динамическое программирование применяется для планирования и анализа экономических процессов во времени. Динамическое программирование представляется в виде многошагового вычислительного процесса с последовательной оптимизацией целевой функции. Сюда следует отнести и имитационное моделирование.

-Теория игр представляется рядом методов, использующихся для определения стратегии поведения конфликтующих сторон. Известные методы можно разделить на два класса – точные и приближенные (итеративные). Условно точная игра может, например, реализовываться на основе линейного программирования путем определенного упорядоченного перебора матрицы-игры. Реализация игры на основе приближенных методов имеет несколько вариантов, но каждый из методов основан на аналитическом осмыслении стратегии на каждом шаге (в каждой партии) с целью совершенствования поведения на последующих шагах (в следующих партиях).

-Теория массового обслуживания (и родственное ей направление – теория управления запасами) включает большой класс экономических задач, где на основе теории вероятностей оценивается, например, мощность или количество агрегатов, обслуживающих какой-либо производственный процесс, численность ремонтных рабочих, запасы ресурсов и т.п. в зависимости от характера спроса на них. При этом многие задачи управления запасами формализуются как задачи массового обслуживания и алгоритмически представляются как эвристические модели.

-Параметрическое программирование является разновидностью линейного программирования, где коэффициенты при переменных линейного функционала, или коэффициенты при пе­ременных системы линейных уравнений, или те и другие коэффициенты зависят от некоторого параметра. К этому направлению может быть отнесен динамический матричный метод решения материальных балансов.

-Стохастическое программирование делится на статистическое и динамическое. В статистических задачах исследуемые параметры являются случайными величинами на определенном этапе. В динамических задачах имеют дело со случайными последовательностями. Большинство статистических задач сводится к задачам линейного программирования. Динамические задачи являются предметом так называемого Марковского программирования.

-Нелинейное программирование относится к наименее изученному (применительно к экономическим явлениям и процессам) математичес­кому направлению. Большинство изученных численных методов нелинейного программирования посвящено решению задач квадратичного программирования на основе симплекс-метода.

-Теория графов – направление математики, где на основе определенной символики представляется формальное (схематическое) описание взаимосвязанности и взаимообусловленности множества работ, ресурсов, затрат и т.п. Набольшее практическое применение получил так называемый сетевой график (сетевой метод). На основе этой формализации с помощью эвристических или математических методов осуществляется исследование выделенного множества на предмет установления оптимального времени производства работ, оптимального распределения запасов и т.п. Одним из методов формализованного исследования являются эвристические алгоритмы систем ПЕРТ и ДЕРЕВО, а также линейное и нелинейное программирование на базе симплекс-метода.

Заключение

Наша жизнь настолько насыщена различной информацией, что хранить ее без помощи средств вычислительной техники уже практически невозможно. Работа с большими объемами информации без помощи компьютера уже оказывается неприемлемой как с точки зрения затрат на ее хранение, так и с точки зрения управления информацией и скорости доступа к ней.

Таким образом, совершенно очевидна столь острая необходимость в упорядочивании данных, создании БД. Динамика, склонность к изменчивости информации вынуждает нас искать новые методы и средства, позволяющие управлять этой динамикой, а не сугубо под неё подстраиваться.

Вычислительные системы, как мощные средства обработки заданий пользователей, широко используются не только автономно, но и в сетях ЭВМ в качестве серверов. Мы видим, что с увеличением размеров сетей и их развитием возрастают плотности информационных потоков, нагрузка на средства доступа к сетевым ресурсам и на средства обработки заданий. Круг задач, решаемый серверами, постоянно расширяется, становится многообразным и сложным. Чем выше ранг сети, тем более специализированными они становятся. Администраторы сетей должны постоянно наращивать их мощь и количество, оптимизируя характеристики сети под возрастающие запросы пользователей. Управление вычислительными процессами в ВС осуществляют операционные системы, которые являются частью общего программного обеспечения. В состав ОС включают как программы централизованного управления ресурсами системы, так и программы автономного использования вычислительных модулей. Мы заметили, что последнее условие необходимо, поскольку в ВС обычно предусматривается более высокая надежность функционирования, например, требование сохранения работоспособности при наличии в ней хотя бы одного исправного модуля. Требование увеличения производительности также предполагает возможность параллельной и даже автономной работы модулей при обработке отдельных заданий или пакетов заданий. Программное обеспечение многопроцессорных ВС отличается большей сложностью. Это объясняется глубинной сложностью всестороннего анализа процессов, формируемых в ВС, а также сложностью принятия решения в каждой конкретной ситуации. Здесь все операции планирования и диспетчеризации связаны с динамическим распределением ресурсов (оперативной и внешней памяти, процессоров, данных системных таблиц, программ, периферийного оборудования и т.п.). Центральное место в этом отводится степени использования и методам управления общей оперативной памятью. Здесь очень часто могут формироваться множественные конфликты, требующие сложных процедур решения.

В данной работе мы также рассмотрели зависимость технико-экономической эффективности вычислительных систем от воплощения в их производстве новейших разработок.

Конструктивная однородность позволяет резко сократить сроки разработки и изготовления систем, приводит к высокой технологичности производства, упрощает и статическую, и динамическую реконфигурации ВС, облегчает их техническую эксплуатацию. Она существенно упрощает процесс организации взаимодействий между вычислителями ВС и облегчает создание программного обеспечения. Полнота воплощения трёх основных принципов модели позволяет заметно ослабить зависимость между ростом производительности ВС и увеличением трудоёмкости их проектирования и изготовления, а также создания системного программного обеспечения. Они открывают возможность построения высокопроизводительных экономически приемлемых вычислительных систем при существующей физико-технологической базе. Более того, возможность неограниченно наращивать производительность позволяет применить для построения ВС микроэлектронные элементы с быстродействием, далеким от предельного, и, следовательно, обладающие более высокой надежностью и меньшим энергопотреблением. В свою очередь, последнее приводит к снижению расходов на установку искусственного климата и содержание эксплуатационного персонала ВС.

Список литературы

1. Бройдо В. Ильина О. Вычислительные системы, сети и телекоммуникации, изд. - Питер, 2011.

2. Емельянов С.В Информационные технологии и вычислительные системы. М., 2010.

3. Мамзелев И.А. Вычислительные системы в технике связи Издательство: Радио и связь, 2007.

4. Паттерсон Д., Хеннесси. Дж. Архитектура компьютера и проектирование компьютерных систем. изд. - Питер. 2012.

5. Пятибратов А.П., Гудыно Л.П., Кириченко А.А. Вычислительные машины, сети и телекоммуникационные системы, М., 2009.

6. Соломенчук В., Соломенчук П., Железо ПК 2012, Издательство: БХВ-Петербург, 2012.

7. Таненбаум Э. Современные операционные системы, изд. - Питер, 2011.

8. Таненбаум Э., Уэзеролл Д., Компьютерные сети, изд. - Питер, 2012.

9. Таненбаум Э. Архитектура компьютера, изд. - Питер, 2011.

10. Чекмарев Ю.В. Вычислительные системы, сети и коммуникации, Издательство: ДМК-Пресс, 2009

11. Моисеенко Е.В., Лаврушина Е.Г. Информационные технологии в экономике. Издательство: ВГУЭС, 2004

12. Ю.К. Беляев, В.А. Богатырев, В.В. Бородин. Надёжность технологических систем Издательство: Радио и связь, 1985