Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Процессор персонального компьютера . Назначение, функции, классификация процессора (Классификация)

Содержание:

Введение

В современном мире, где информационные технологии так прочно вошли в жизнь человека, мы не можем представить ни одной области деятельности людей без компьютера. Дома, на работе, на учебе - сфера использования постоянно расширяется, сильно влияя на жизнь всего общества в целом и развитие его производственных сил. С течением времени и прогресса развивается и компьютер, изменяются в лучшую сторону его технические характеристики, такие как быстродействие, удобство в работе, стоимость, размеры, количество потребляемой электроэнергии.

В наше время невозможно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны ограниченному кругу специалистов. Однако в 1971 г. произошло событие, которое совершенно изменило ситуацию и превратило компьютер в повседневный рабочий инструмент миллионов людей. Это событие было таким: фирма Intel, выпустила первый микропроцессор. Это было началом появления нового класса вычислительных систем - персональных компьютеров, которыми теперь пользуются все, от учащихся начальных классов и бухгалтеров до ученых и инженеров. Эти компьютеры, очень маленькие по размеру, выполняют все новые и новые задачи, которые ранее были доступны лишь системам, занимавшим не одну сотню квадратных метров. Наверное, никогда прежде человек не имел в своих руках инструмента, обладающего столь необъятной мощью при столь микроскопических размерах.

Впервые о создании микропроцессора было объявлено в 1972 г. Через 13 лет в 1985 г. в мире уже работали свыше 30 млн. ЭВМ.

Процессор является основным вычислительным блоком компьютера. Он является устройством, исполняющим программу - последовательность команд, задуманную программистом и оформленную в виде модуля программного кода.

На сегодняшний день компьютеры используются во многих сферах: для ведения бухгалтерского учета и создания сложных научных моделей, разработки дизайна и создания музыки, хранения, поиска информации в базах данных, обучения, игр, прослушивания музыки и т.д. Необходимо знать компьютер и уметь им пользоваться. Не каждый человек, который работает на компьютере , представляет себе точный состав ПК.

Актуальность моей работы обусловлена тем, что процессор - это тот узел, который производит всю обработку информации внутри микропроцессорной системы. Остальные узлы выполняют всего лишь вспомогательные функции: хранение информации (в том числе и управляющей информации, то есть программы), связи с внешними устройствами, связи с пользователем и т.д.

Цель: рассмотрение назначения, функций, классификации процессоров

Объект: процессор персонального компьютера

Предмет: обзор процессоров известных марок

Практическая значимость: более глубокое знание и изучение назначения, основных функций процессора, его основных особенностей, классификации поможет определять при выборе персонального компьютера наиболее функциональный , выгодный с высокой производительностью и подходящий для необходимой области применения процессор.

Задачи:

 изучить литературу по назначению, функции, классификации процессора, ознакомиться с историей создания компьютеров;

 изучить основные виды процессоров, их основные свойства и характеристики;

 разобрать все виды классификации процессоров.

Глава I. Общие понятия и определения о процессоре

1.1. Назначение, функции процессора

Процессор (или центральный процессор, ЦП) - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера, отвечающий за выполнение операций, заданных программами.

Современные ЦП, выполняемые в виде отдельных микросхем, реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова "микропроцессор". Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших и сверхбольших интегральных схем.

Изначально термин "Центральное процессорное устройство" описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он был перенесён на сами компьютеры.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху развития полупроводниковых элементов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Это позволило использовать эти цифровые устройства в повседневной жизни человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Назначение процессора:

  1. Управлять работой ЭВМ по заданной программе;
  2. Выполнять операции обработки информации.

Микропроцессор (МП) – это огромная интегральная схема, которая реализует функции процессора ПК. Микропроцессор создается на полупроводниковом кристалле (или нескольких кристаллах) путем применения сложной микроэлектронной технологии. Возможности компьютера как исполнителя по работе с информацией определяются системой команд процессора. Эта система команд представляет собой язык машинных команд (ЯМК). Из команд ЯМК составляют программы управления работой компьютера. Отдельная команда определяет отдельную операцию (действие) компьютера. В ЯМК существуют команды, по которым выполняются арифметические и логические операции, операции управления последовательностью выполнения команд, операции передачи данных из одних устройств памяти в другие и прочее.

Основные функции процессора:

чтение и дешифрация команд из основной памяти;

чтение данных из основной памяти и регистров адаптеров внешних устройств;

прием и обработка запросов и команд от адаптеров на обслуживание внешних устройств;

обработка данных и их запись в основную память и регистры адаптеров внешних устройств;

выработка управляющих сигналов для всех прочих узлов и блоков компьютера.

Процессор обычно представляет собой отдельную микросхему или же часть микросхемы. Вначале процессор иногда выполнялся на комплектах из нескольких микросхем, но сейчас от такого подхода уже практически отказались. Микросхема процессора обязательно имеет выводы трех шин: шины адреса, шины данных и шины управления.

Самые главные характеристики процессора — это количество разрядов его шины данных, количество разрядов его шины адреса и количество управляющих сигналов в шине управления. Разрядность шины данных определяет скорость работы системы. Разрядность шины адреса определяет допустимую сложность системы. Количество линий управления определяет разнообразие режимов обмена и эффективность обмена процессора с другими устройствами системы.

Кроме выводов для сигналов трех основных шин процессор всегда имеет вывод (или два вывода) для подключения внешнего тактового сигнала или кварцевого резонатора (CLK), так как процессор всегда представляет собой тактируемое устройство. Чем больше тактовая частота процессора, тем он быстрее работает, то есть тем быстрее выполняет команды. Быстродействие процессора определяется не только тактовой частотой, но и особенностями его структуры. Современные процессоры выполняют большинство команд за один такт и имеют средства для параллельного выполнения нескольких команд. Тактовая частота процессора не связана прямо и жестко со скоростью обмена по магистрали, так как скорость обмена по магистрали ограничена задержками распространения сигналов и искажениями сигналов на магистрали. То есть тактовая частота процессора определяет только его внутреннее быстродействие, а не внешнее. Иногда тактовая частота процессора имеет нижний и верхний пределы. При превышении верхнего предела частоты возможно перегревание процессора, а также сбои. Так что с изменением этой частоты надо быть очень осторожным.

1.2. Классификация процессоров

Можно выделить следующую классификацию процессоров:

1) однокристальный;

2) многокристальный;

3) многокристальный секционный.

По числу больших интегральных схем в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Однокристальные микропроцессоры получаются при реализации всех аппаратных свойств процессора в виде одной большой интегральной схемы или сверхбольших интегральных схем. По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде больших интегральных схем. Функциональная законченность больших интегральных схем многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде больших интегральных схем реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями. Для построения многоразрядных микропроцессоров при параллельном включении секций больших интегральных схем в них добавляются средства "стыковки".

Классификация по назначению

Универсальные микропроцессоры могут применяться для решения широкого круга разнообразных задач. При этом их производительность мало зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т.д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных.

Классификация по характеру временной организации работы

Синхронные микропроцессоры - микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

Классификация по количеству выполняемых программ

В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

Во много или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

1.3. Основные характеристики процессора

В общем случае процессор содержит:

1) Арифметико-логическое устройство - часть процессора, выполняющая машинные команды

2) Устройство управления – часть процессора, выполняющая функции управления устройствами компьютера

3) Шины данных и шины адресов (на физическом уровне) – много проводные линии с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шины данных и шину управления: Шина адреса предназначена для передачи адреса того устройства (или той ячейки памяти), к которому обращается процессор. По шине данных передаётся  вся информация при записи и считывании. По шине управления передается управляющий сигнал. Процесс взаимодействия процессора и памяти сводится к двум операциям – записи и считывания информации. При записи процессор по специальным проводникам (шина адреса) передает биты, кодирующие адрес, по  другим проводникам – управляющий сигнал «запись», и еще по другой группе проводников (шины данных) передает записываемую информацию. При чтении по шине адреса передается соответствующий адрес оперативной памяти (ОП), а с шины данных считывается нужная информация.

4)Регистры - ячейки памяти, которые служат для кратковременного хранения и преобразования данных и команд. На физическом уровне регистр – совокупность триггеров, способных хранить один двоичный разряд и связанных между собой общей системой управления

5) Счетчик команд – регистр управляющего устройства компьютера содержимое, которого соответствует адресу очередной выполняемой команды. Счетчик команд служит для автоматической выборки программы из последовательных ячеек памяти

6) Кэш память  - очень быстрая память малого объема служит для увеличения производительности компьютера, согласования работы устройств различной скорости. Кэш-память может быть встроена сразу в процессор или размещаться на материнской плате

7) Сопроцессор – вспомогательный процессор, предназначенный для выполнения математических и логических действий. Использование сопроцессора позволяет ускорить процесс обработки информации компьютером.

Центральный процессор - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.

Большинство современных процессоров для персональных компьютеров основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

Джон фон Нейман придумал схему постройки компьютера в 1946 году. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;

Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды.

Во время этого процесса, процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

Глава 2. Виды процессоров

2.1. Процессоры семейства Intel

Первые процессоры были созданы фирмой Intel, и поэтому мы проведем обзор процессоров именно этой фирмы.

Процессор 8086/88.

Фирма Intel первой выпустила 16-битный микропроцессор 8086. Микропроцессор 8086 оказался "прародителем" целого семейства, которое называют семейством 80x86.

Позже появился микропроцессор 8088, повторяющий архитектуру микропроцессора 8086 и имеющий 16-битные внутренние регистры, но его внешняя шина данных составляет 8 бит. Это микропроцессор стал широко популярен в связи с его применением фирмой IBM в персональных компьютерах PC и PC/XT.

Процессор 80186/88.

В 1981 г. появились микропроцессоры 80186/80188, которые сохраняли базовую архитектуру микропроцессоров 8086/8088, но содержали на кристалле контроллер прямого доступа к памяти, счетчик/таймер и контроллер прерываний. А также, была расширена система команд. Но широкого распространения эти микропроцессоры, не получили.

Процессор 80286.

Следующим стал микропроцессор 80286, появившийся в 1982 году.

При разработке были учтены достижения в архитектуре микрокомпьютеров и больших компьютеров. Процессор 80286 может работать в двух режимах: в режиме реального адреса как микропроцессор 8086, а в защищенном режиме виртуального адреса (Protected Virtual Adress Mode) или P-режиме предоставляет программисту много новых возможностей и средств. Среди них можно отметить расширенное адресное пространство памяти 16 Мбайт, появление дескрипторов сегментов и дескрипторных таблиц, наличие защиты по четырем уровням привилегий, поддержку организации виртуальной памяти и мультизадачности.

Процессор 80386.

При разработке 32-битного процессора 80386 необходимо было решить две основные задачи - совместимость и производительность. Первая из них была решена с помощью эмуляции микропроцессора 8086 - режим реального адреса (Real Adress Mode) или R-режим.

В R- режиме процессор 80386 может выполнять 16-битные программы (код) процессора 80286 без каких-либо дополнительных модификаций. В этом же режиме он может выполнять 32-битные программы, что обеспечивает повышение производительности системы. Именно в этом режиме реализуются все новые возможности и средства процессора 80386, среди которых можно отметить масштабированную индексную адресацию памяти, ортогональное использование регистров общего назначения, новые команды, средства отладки. Адресное пространство памяти в этом режиме составляет 4 Гбайт.

Микропроцессор 80386 разделен внутри на 6 автономно и параллельно работающих блоков с соответствующей синхронизацией. Все внутренние шины, соединяющие эти блоки, имеют разрядность 32 бит. Конвейерная организация функциональных блоков в 80386 допускает временное наложение выполнения различных стадий команды и позволяет одновременно выполнять несколько операций. Кроме конвейерной обработки всех команд, в 80386 выполнение ряда важных операций осуществляется специальными аппаратными узлами. Блок умножения/деления 80386 может выполнять 32-битное умножение за 9-41 такт синхронизации, в зависимости от числа значащих цифр; он может разделить 32-битные операнды за 38 тактов (в случае чисел без знаков) или за 43 такта (в случае чисел со знаками). Регистр группового сдвига 80386 может за один такт сдвигать от 1 до 64 бит. Обращение к более медленной памяти (или к устройствам ввода/вывода) может производиться с использованием конвейерного формирования адреса для увеличения времени установки данных после адреса до 3 тактов при сохранении двухтактных циклов в процессоре. Вследствие внутреннего конвейерного формирования адреса при исполнении команды, 80386, вычисляет адрес и определяет следующий магистральный цикл во время текущего магистрального цикла. Узел конвейерного формирования адреса передает эту опережающую информацию в подсистему памяти, позволяя, тем самым, одному банку памяти дешифрировать следующий магистральный цикл, в то время как другой банк реагирует на текущий магистральный цикл.

Процессор 80486.

В 1989 г. Intel создала представителя семейства 80х86, содержащего более миллиона (а точнее, 1,2 миллиона) транзисторов в чипе. Этот чип во многом похож на 80386. Он на 100% совместим программой с микропроцессорами 386(ТМ) DX & SX. Один миллион транзисторов объединенной кэш-памяти (сверхбыстрой оперативной памяти), вместе с аппаратурой для выполнения операций с плавающей запятой и управлением памяти на одной микросхеме, поддерживают программную совместимость с предыдущими членами семейства процессоров архитектуры 86. Часто используемые операции выполняются за один цикл, что сравнимо со скоростью выполнения RISC-команд.

Процессор i486SX

Появление нового микропроцессора i486SX фирмы Intel можно считать одним из важнейших событий 1991 года. Уже предварительные испытания показали, что компьютеры на базе i486SX с тактовой частотой 20 МГц работают быстрее (примерно на 40%) компьютеров, основанных на i80386DX с тактовой частотой 33 МГц. Микропроцессор i486SX, подобно оригинальному i486DX, содержит на кристалле и кэш-память, а вот математический сопроцессор у него заблокирован. Значительная экономия (благодаря исключению затрат на тестирование сопроцессора) позволила фирме Intel значительно снизить цены на новый микропроцессор. Так как микропроцессор i486DX был ориентирован на применение в сетевых серверах и рабочих станциях, то i486SX послужил для создания настольных компьютеров. В семействе микропроцессоров i486 предусматривается несколько новых возможностей для построения мультипроцессорных систем: соответствующие команды поддерживают механизм семафоров памяти, аппаратно - реализованное выявление недостоверности строки кэш-памяти обеспечивает согласованность между несколькими модулями кэш-памяти и т.д. Для микропроцессоров семейства i486 допускается адресация физической памяти размером 64 Тбайт

Процессор Pentium.

В то время, когда Винод Дэм начал в июне 1989 года разработку Pentium процессора, он не мог подумать, что именно этот процессор будет главным достижением фирмы Intel. Как только выполнялся очередной этап проекта, сразу начинался процесс тестирования. Для тестирования была разработана специальная технология, позволившая имитировать функционирование Pentium процессора с использованием программируемых устройств, объединенных на 14 платах с помощью кабелей. Только когда были обнаружены все ошибки, процессор смог работать в реальной системе. И самое важное то ,что в процессе разработки и тестирования Pentium процессора принимали активное участие все основные разработчики персональных компьютеров и программного обеспечения, что и способствовало успеху проекта. В конце 1991 года, когда была завершен макет процессора, инженеры смогли запустить на нем программное обеспечение. Проектировщики начали изучать под микроскопом разводку и прохождение сигналов по подложке с целью повышения эффективности работы. Проектирование в основном было завершено в феврале 1992 года. Началось всеобщее тестирование опытной партии процессоров, в течение которого испытаниям подвергались все блоки и узлы. В апреле 1992 года было принято решение, что пора начинать промышленное освоение Pentium процессора. Объединяя более, чем 3.1 миллион транзисторов на одной кремниевой подложке, 32-разрядный Pentium процессор характеризуется высокой производительностью с тактовой частотой 60 и 66 МГц. Его суперскалярная архитектура использует усовершенствованные способы проектирования, которые позволяют выполнять более, чем одну команду за один период тактовой частоты, в результате чего Pentium в состоянии выполнять огромное количество PC-совместимого программного обеспечения быстрее, чем любой другой микропроцессор суперскалярная архитектура Pentium процессора представляет собой совместимую только с Intel двухконвейерную индустриальную архитектуру, позволяющую процессору достигать новых уровней производительности посредством выполнения более, чем одной команды за один период тактовой частоты. Термин "суперскалярная" обозначает микропроцессорную архитектуру, которая содержит более одного вычислительного блока. Эти вычислительные блоки, или конвейеры, являются узлами, где происходят все основные процессы обработки данных и команд. Появление суперскалярной архитектуры Pentium процессора представляет собой естественное развитие предыдущего семейства процессоров с 32-битовой архитектурой фирмы Intel. Например, процессор Intel486 способен выполнять несколько своих команд за один период тактовой частоты, однако предыдущие семейства процессоров фирмы Intel требовали множество циклов тактовой частоты для выполнения одной команды

Другое важнейшее усовершенствование, реализованное в Pentium процессоре, это введение раздельного кэширования. Кэширование увеличивает производительность посредством активизации места временного хранения для часто используемого программного кода и данных, получаемых из быстрой памяти, заменяя по возможности обращение к внешней системной памяти для некоторых команд.

Процессор Intel486, например, содержит один 8-KB блок встроенной кэш-памяти, используемой одновременно для кэширования программного кода и данных. Процессор позволяет выполнять математические вычисления на более высоком уровне благодаря использованию усовершенствованного встроенного блока вычислений с плавающей запятой, который включает восьмитактовый конвейер и аппаратно реализованные основные математические функции. Четырехтактовые конвейерные команды вычислений с плавающей запятой дополняют четырехтактовую целочисленную конвейеризацию.

Большая часть команд вычислений с плавающей запятой могут выполняться в одном целочисленном конвейере, после чего подаются в конвейер вычислений с плавающей запятой. Обычные функции вычислений с плавающей запятой, такие как сложение, умножение и деление, реализованы аппаратно с целью ускорения вычислений.

2.2. Процессоры семейства AMD

Современные процессоры AMD маркируют трехзначными и четырехзначными числами. На 2012 год для процессоров AMD самым распространенным сокетом является Socket AM3+. Socket AM3+ частично совместим с Socket AM3, поэтому процессор предназначенный для Socket AM3 сможет работать на платформе с Socket AM3+, но при работе Socket AM3+ процессора на сокете AM3 некоторые вспомогательные функции, такие как режим контроля температуры и энергосбережения не будут задействованы.

Выбирая процессор AMD, нужно обращать внимание на тактовую частоту процессора, объем кэша, тип, частоту поддерживаемой оперативной памяти и сокет.

Процессоры A-series, Athlon II и Phenom II - самые распространенные на сегодняшний день. Самым слабым процессором AMD-является A-series, его предназначение офисные конфигурации ПК.

Обладает встроенным видеоядром и оборудован для установки на сокет FM1. Его аналогом в семействе процессоров Intel можно назвать Celeron.

Процессор Athlon обладает средней мощностью, работает на сокете AM3/AM3+, новые модели работают на сокете Socket FM1. Аналог intel Pentium и Core i3/i5.

Самым мощным на сегодняшний день процессором AMD -является Phenom. Подходит для игровых конфигураций системных блоков. 6 ядерные модели Phenom по производительности сравнимы с процессорами серии Core i5-2 и Core i7 от intel.

Процессоры AMD A-series:

2 ядерные процессоры этой модели обозначаются буквой "A" с цифрой "4", цифрой 6 обозначают 3 ядерный процессор и четырехзначным числом. Чем больше число, тем выше тактовая частота ЦП. Размер кэша второго уровня процессоров линейки A4 равен 1 Мб, у процессоров A6 - кэш 3 Мб.

Процессоры AMD Athlon II:

Буквенно-цифровое обозначение процессоров Athlon II зависит от тактовой частоты и кол-ва ядер. Серия X2 2- 2-ядерные, Х3 4- 3-ядерные, Х4 6-4-ядерные. Трехзначное число зависит от объёма кэша (от 1 до 4 Мб), также тактовой частоты процессора.

Процессоры AMD Phenom II:

Процессоры Phenom II бывают 2 ядерными (X2) ,4 ядерными (X4), 6 ядерными (X6). В каждой из этих серий процессоры маркируют в зависимости от тактовой частоты, чем выше трехзначное число, тем выше частота. Phenom II X2 имеют кэш- L2 с объемом 1 Мб и 6 Мб кэш L3.

Основные характеристики процессоров перечислены ниже:

Что такое процессор немного знают многие люди, но как разбираться в технической документации к нему. Что в прайсе значат непонятные цифры и другие подобные вопросы осилит далеко не каждый пользователь. Да и иногда знатоки компьютера не всегда представляют, что значит разрядность, например

Количество ядер - этот параметр показывает количество одновременно работающих программ. Но нельзя думать, что если запустить Word и Winamp на компьютере с одним ядром, то программы работают одновременно. Они работают последовательно переключаясь с одной на другую, но делают это так быстро, если у нас быстрый компьютер, что мы этого не замечаем. Количество ядер в последнее время прочно вошло в основные характеристики процессора, что многие ошибочно думают, что если ядер больше, то всегда будет прирост производительности.

Частота процессора - это скорость с которой происходит обмен данными между процессором и системной шиной компьютера.

Измеряется точно также как тактовая частота и по понятным причинам всегда ниже.

Коэффициент умножения (или умножение) - он нужен, чтобы получить тактовую частоту процессора. Частоту шины нужно умножить на коэффициент.

Тепловыделение процессора - измеряется в ватах. То есть, показывает какой мощности должен быть вентилятор (кулер), чтобы обеспечить бесперебойную работу.

Максимальная рабочая температура - если превысить максимум, то процессор перегреется, и вполне возможно компьютер или выключится, или сам начнет перезагружаться.

Виды процессоров:

Буферный процессор - процессор или специализированная микро ЭВМ, производящие промежуточную обработку данных, которыми обмениваются центральный процессор или центральная ЭВМ с устройствами ввода-вывода. Препроцессор –

1. Программа, выполняющая предварительную обработку данных для другой программы;

2. То же, что буферный процессор CISC (Complex Instruction Set Computing) - " Вычислитель со сложным набором команд" - Технология и архитектура построения микропроцессоров фирмы Intel (см. ниже также RISC).RISC (Redused Instruction-Set Computer) - " Вычислитель с сокращенным набором команд" - Технология и архитектура построения микропроцессоров, альтернативная технологии CISC . Принцип построения RISC- процессоров основан на применении набора простых команд и "на их основе сборки" требуемых более сложных команд. Это позволяет сделать микропроцессоры более компактными и производительными, а также менее энергоемкими и дорогими. Другое преимущество технологии RISC заключается в принципиальной возможности обеспечения совместимости ПЭВМ типа IBM PC и Macintosh фирмы Apple .

В 1994 г . фирмой Apple была выпущена первая ПЭВМ "Power Macintosh" с МП PowerPC (Performance Optimized With Enhanced RISC Perconal Computer). Последний из МП этого вида - 132-х Мгц PowerPC 604 является самым "быстрым" или производительным и составляет конкуренцию МП Pentium, а возможно и Pentium Pro . Но полной совместимости с МП ряда Intel он, также как и другие модели PowerPC пока не обеспечивает (для согласования этих систем используется программный транслятор, преобразующий команды х86 в команды PowerPC, который обеспечивает возможность поддержки ограниченного числа применяемых IBM PC программных продуктов).

Фирмы Intel и Hewlett-Packard ведут разработку следующего за Pentium Pro поколения микропроцессоров, которые будут объединять признаки CISC и RISC архитектуры.

Процессор-клон. Клон - Процессор, выпускаемый другой фирмой - не его основным разработчиком и производителем, в том числе по лицензии или без нее. Распространены на мировом рынке средств вычислительной техники клоны микропроцессоров моделей ряда х386, х486, Pentium, Pentium III и т.д., выпускаемые другими фирмами - не Intel . Обычно, клоны представляют собой собственную разработку выпускающих их фирм. При этом они бывают как полностью, так и только частично совместимы с оригинальной продукцией фирмы Intel, имеют отличные от них характеристики и даже успешно конкурируют с ними. Например, 29 ноября 1999 г. фирма AMD выпустила и произвела презентацию микропроцессора Athlon 750 (МГц), впервые в мире произведенного по т.н. "алюминиевой" 0,18 мкм технологии и превысившего по производительности микропроцессор Intel Pentium III 733 МГц. В марте 2000 г. фирма AMD выпустила на мировой рынок первую партию микропроцессоров с тактовой частотой в 1 ГГц, а в октябре этого же года - процессор Athion 1,2 ГГц и Duron 800 ГГц. Наиболее известными фирмами-производителями клонов являются: AMD, Cyrix, IBM Microelectronics, SGS-Thomson, Texas Instruments, NexGen.

Заключение

Процессор представляет собой компьютер в миниатюре. Кроме обрабатывающего блока, он содержит блок управления, и даже память (внутренние ячейки памяти). Это значит , что процессор способен автономно выполнять все необходимые действия с информацией. Многие компоненты современного персонального компьютера содержат внутри себя миниатюрный компьютер.

Микропроцессоры незаменимы в современной технике. Например, управление современным двигателем - обеспечение экономии расхода топлива, ограничение максимальной скорости движения, контроль исправности и т.д.- немыслимо без использования микропроцессоров. Еще одной перспективной сферой их использования является бытовая техника, применение микропроцессоров придает ей новые потребительские качества.

Производство и усовершенствование процессоров не стоит на месте. Современные технологии с каждым днем упрощают работу человека с компьютером, давая ему больше возможностей для работы.

Список использованной литературы

  1. Леонтьев В.П. Новейшая энциклопедия персонального компьютера, 2006.
  2. Вербовецкий А.А. Основы компьютерных технологий и современные ПК.
  3. Глушаков С.В., Сурядный А.С., Хачиров Т.С., Персональный компьютер.
  4. Иванько А.Ф. Структура и архитектура микропроцессоров современных персональных электронных вычислительных машин.
  5. Ершова Н.Ю. , Ивашенков О.Н., Курсков С.Ю. ,Микропроцессоры.
  6. Микропроцессоры. Структура микропроцессора и его основные характеристики. http://skola.lv/index.php?mode=cht&chtid=459
  7. Компьютер. Центральный процессор. Универсальная научно-популярная онлайн-энциклопедия Кругосвет.
  8. Процессоры Pentium III, Athlon и другие. Гук М., Юров В. СПб: издательство «Питер», 2000.
  9. Цилькер Б. Я., Орлов С.А. Организация ЭВМ и систем. СПб.: Питер, 2006.
  10. Гук М., Юров В. Процессоры Pentium 4, Athlon и Duron. - СПб.: Питер, 2002.
  11. Таненбаум Э. Архитектура компьютеров. СПб.: Питер, 2007.
  12. В.В.Корнеев, А.В.Киселев Современные микропроцессоры, 3-е изд., перераб. и доп. - СПб.: БХВ-Петербург, 2003.

Начало формы