Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Касательная к графику функции и производная с примерами решения

Вы уже знаете, какую прямую называют касательной к окружности. А что понимают, например, под касательной к синусоиде? Прямая Касательная к графику функции и производная с примерами решения

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точка Касательная к графику функции и производная с примерами решения которая не является концом графика (рис. 60). Обозначим на данном графике по разные стороны от Касательная к графику функции и производная с примерами решения произвольные точки Касательная к графику функции и производная с примерами решения Прямые Касательная к графику функции и производная с примерами решения — секущие. Если же точки Касательная к графику функции и производная с примерами решения двигаясь по графику, приближать достаточно близко к Касательная к графику функции и производная с примерами решения как угодно близко будут приближаться к некоторой прямой Касательная к графику функции и производная с примерами решения Такую прямую Касательная к графику функции и производная с примерами решения (если она существует) называют касательной к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Если график функции такой, как показано на рисунке 61, то при неограниченном приближении точек Касательная к графику функции и производная с примерами решения к точке Касательная к графику функции и производная с примерами решения предельные положения секущих — прямые Касательная к графику функции и производная с примерами решения — не совпадут. Говорят, что в точке Касательная к графику функции и производная с примерами решения касательной к графику функции  не существует.

Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

И если Касательная к графику функции и производная с примерами решения — крайняя точка графика, то касательной к нему в точке Касательная к графику функции и производная с примерами решения не существует.

Понятие касательной к графику часто используют для исследования функций. Рассмотрим этот вопрос сначала в общем виде.

Касательная — это прямая. Её уравнение имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент — тангенс угла между лучом касательной, расположенным выше оси Касательная к графику функции и производная с примерами решения и положительным направлением этой оси. Обратите внимание на угловой коэффициент Касательная к графику функции и производная с примерами решения касательной, проведённой к графику какой-либо функции в его точке с абсциссой Касательная к графику функции и производная с примерами решения Если число Касательная к графику функции и производная с примерами решения принадлежит промежутку возрастания функции, то соответствующее значение Касательная к графику функции и производная с примерами решения положительное (рис. 62). Если Касательная к графику функции и производная с примерами решения принадлежит промежутку убывания функции, то Касательная к графику функции и производная с примерами решения — отрицательное (рис. 63). И наоборот: если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует положительное значение Касательная к графику функции и производная с примерами решения то на Касательная к графику функции и производная с примерами решения данная функция возрастает; если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует отрицательное значение Касательная к графику функции и производная с примерами решения то на  функция убывает. Заслуживают внимания и те точки графика функции, в которых касательная не существует, и в которых она параллельна оси Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Итак, зная угловые коэффициенты касательных к графику функции в тех или иных точках, можно сделать вывод, возрастает данная функция в этих точках, или убывает.

Поскольку для исследования функций важно уметь определять угловой коэффициент касательной к её графику, то рассмотрим подробнее связь этого коэффициента с исследуемой функцией.

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точку Касательная к графику функции и производная с примерами решения в которой существует касательная к графику (рис. 64). Если абсцисса точки Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения то её ордината — Касательная к графику функции и производная с примерами решения Дадим значению аргумента Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Тогда значению аргумента Касательная к графику функции и производная с примерами решения на графике функции соответствует точка Касательная к графику функции и производная с примерами решения с абсциссой Касательная к графику функции и производная с примерами решения и ординатой Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Через точки Касательная к графику функции и производная с примерами решения проведём прямые Касательная к графику функции и производная с примерами решения параллельные осям абсцисс и ординат. Они пересекутся в некоторой точке Касательная к графику функции и производная с примерами решения Тогда Касательная к графику функции и производная с примерами решения — приращение аргумента, а Касательная к графику функции и производная с примерами решения — приращение функции на Касательная к графику функции и производная с примерами решения

Угловой коэффициент секущей Касательная к графику функции и производная с примерами решения равен тангенсу угла Касательная к графику функции и производная с примерами решения т. е. отношению Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Если Касательная к графику функции и производная с примерами решения то секущая Касательная к графику функции и производная с примерами решения поворачиваясь вокруг точки Касательная к графику функции и производная с примерами решения приближается к касательной, проведённой в точке Касательная к графику функции и производная с примерами решения к графику данной функции. Итак, если Касательная к графику функции и производная с примерами решения — угловой коэффициент этой касательной и Касательная к графику функции и производная с примерами решения то

Касательная к графику функции и производная с примерами решения

Так определяется угловой коэффициент касательной к графику функции Касательная к графику функции и производная с примерами решения в некоторой точке Касательная к графику функции и производная с примерами решения если касательная в ней не параллельна оси Касательная к графику функции и производная с примерами решения Если касательная к графику функции в некоторой точке параллельна оси Касательная к графику функции и производная с примерами решения то угловой коэффициент этой касательной равен нулю.

К вычислению значения выражения Касательная к графику функции и производная с примерами решения  или Касательная к графику функции и производная с примерами решения приводит решение многих задач по механике, электричеству, биологии, экономике, статистике и т. д. Именно поэтому это выражение получило специальное название — производная.

Производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения называют предел отношения приращения функции в точке Касательная к графику функции и производная с примерами решения к приращению аргумента, если приращение аргумента стремится к нулю, а предел существует.

Производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения обозначают Касательная к графику функции и производная с примерами решения Её определение записывают также в виде равенства:

Касательная к графику функции и производная с примерами решения

Пример:

Найдите производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Дадим аргументу Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Соответствующее приращение функции Касательная к графику функции и производная с примерами решения

Тогда Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Следовательно, Касательная к графику функции и производная с примерами решения

Ответ. Касательная к графику функции и производная с примерами решения

Так решают задачу, пользуясь определением производной функции в точке.

До сих пор речь шла о производной функции в точке. А можно рассматривать производную функции и как функцию. Пусть, например, дана функция Касательная к графику функции и производная с примерами решенияНайдём её производную в произвольной точке Касательная к графику функции и производная с примерами решения Для этого дадим значению Касательная к графику функции и производная с примерами решенияприращение Касательная к графику функции и производная с примерами решения Соответствующее ему приращение функции

Касательная к графику функции и производная с примерами решения

Поэтому Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Имеем Касательная к графику функции и производная с примерами решения

Следовательно, производная функции Касательная к графику функции и производная с примерами решения в каждой её точке Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения Пишут: Касательная к графику функции и производная с примерами решения или, если Касательная к графику функции и производная с примерами решения

Обратите внимание! Производная функции в точке — это число. Когда же говорят о производной, не указывая «в точке», подразумевают производную как функцию: производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения и т. д.

Зная это, производную функции в точке можно вычислять проще, чем по определению производной функции в точке. Пример 2. Дана функция Касательная к графику функции и производная с примерами решенияНайдите Касательная к графику функции и производная с примерами решения Решение. Производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения

 Нахождение производной называется дифференцированием.  Функция, которая имеет производную в точке Касательная к графику функции и производная с примерами решения называется дифференцируемой в точке Касательная к графику функции и производная с примерами решения Функция, дифференцируемая в каждой точке некоторого промежутка, называется дифференцируемой на этом промежутке.

Докажем, например, что линейная функция Касательная к графику функции и производная с примерами решения дифференцируема в каждой точке Касательная к графику функции и производная с примерами решения Действительно, приращению Касательная к графику функции и производная с примерами решения её аргумента Касательная к графику функции и производная с примерами решения соответствует приращение функции Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решения и если Касательная к графику функции и производная с примерами решения А это и значит, что в каждой точке Касательная к графику функции и производная с примерами решения функция Касательная к графику функции и производная с примерами решения имеет производную Касательная к графику функции и производная с примерами решения

 Пишут Касательная к графику функции и производная с примерами решения

 В частности: Касательная к графику функции и производная с примерами решения

 Производная постоянной равна нулю.

Из курса планиметрии известно, что уравнение прямой, проходящей через заданную точку Касательная к графику функции и производная с примерами решения имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент прямой.

Поскольку для касательной к графику функции Касательная к графику функции и производная с примерами решения угловой коэффициент равен значению производной в точке касания Касательная к графику функции и производная с примерами решения то можем записать общий вид уравнения касательной, проведённой к графику функции Касательная к графику функции и производная с примерами решения в точке касания Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

До сих пор речь шла о касательных к криволинейным графикам. Но графиком функции может быть и прямая или часть прямой. Поэтому для обобщения договариваются касательной к прямой в любой её точке считать эту самую прямую. Касательной к отрезку или лучу в любой его внутренней точке считают прямую, которой принадлежит этот отрезок или луч.

Выше было установлено, что производная линейной функции равна коэффициенту при переменной, т.е Касательная к графику функции и производная с примерами решения

Полученный результат имеет очевидный геометрический смысл: касательная к прямой — графику функции Касательная к графику функции и производная с примерами решения — есть эта самая прямая, её угловой коэффициент равен Касательная к графику функции и производная с примерами решения

Пример:

Найдите угол, который образуете положительным направлением оси Касательная к графику функции и производная с примерами решениякасательная к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Определим сначала угловой коэффициент этой касательной по формуле Касательная к графику функции и производная с примерами решения — приращения функции и приращения аргумента соответственно.

Найдем приращение функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Найдём угловой коэффициент касательной:

Касательная к графику функции и производная с примерами решения

Поскольку Касательная к графику функции и производная с примерами решения

Известно также, что Касательная к графику функции и производная с примерами решения поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решения

Пример:

Докажите, что для функции Касательная к графику функции и производная с примерами решения производной есть функция Касательная к графику функции и производная с примерами решения

Решение:

 Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения А это и означает, что производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения

Пример:

Напишите уравнение касательной к графику функции Касательная к графику функции и производная с примерами решения в его точке с абсциссой Касательная к графику функции и производная с примерами решения

Решение:

Способ 1. Уравнение касательной имеет вид Касательная к графику функции и производная с примерами решения Угловой коэффициент Касательная к графику функции и производная с примерами решения равен значению производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения Значит, уравнение касательной Касательная к графику функции и производная с примерами решенияКоординаты точки касания Касательная к графику функции и производная с примерами решения Точка с такими координатами принадлежит касательной, поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решенияСледовательно, уравнение касательной имеет вид: Касательная к графику функции и производная с примерами решения

Способ 2. Запишем общий вид уравнения касательной:

Касательная к графику функции и производная с примерами решения

Найдём Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Подставим найденные значения в уравнение касательной:

Касательная к графику функции и производная с примерами решения