Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Гипербола - определение и вычисление с примерами решения

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек Гипербола - определение и вычисление с примерами решения

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Гипербола - определение и вычисление с примерами решения Согласно определению, для гиперболы имеем Гипербола - определение и вычисление с примерами решения Из треугольников Гипербола - определение и вычисление с примерами решения по теореме Пифагора найдем Гипербола - определение и вычисление с примерами решениясоответственно.

Следовательно, согласно определению имеем

Гипербола - определение и вычисление с примерами решения

Возведем обе части равенства в квадрат, получим

Гипербола - определение и вычисление с примерами решения

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находимГипербола - определение и вычисление с примерами решения Раскроем разность квадратов Гипербола - определение и вычисление с примерами решения Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Гипербола - определение и вычисление с примерами решения Вновь возведем обе части равенства в квадрат Гипербола - определение и вычисление с примерами решения Раскрывая все скобки в правой части уравнения, получим Гипербола - определение и вычисление с примерами решения Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Гипербола - определение и вычисление с примерами решения Введем обозначение для разности, стоящей в скобках Гипербола - определение и вычисление с примерами решения Получим Гипербола - определение и вычисление с примерами решения Разделив все члены уравнения на величину Гипербола - определение и вычисление с примерами решения получаем каноническое уравнение гиперболы: Гипербола - определение и вычисление с примерами решения Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решенияследовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: Гипербола - определение и вычисление с примерами решения т.е. точками пересечения гиперболы с осью абсцисс будут точки Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения т.е. гипербола не пересекает ось ординат.

Гипербола - определение и вычисление с примерами решения

Рис. 32. Асимптоты и параметры гиперболы Гипербола - определение и вычисление с примерами решения

Определение: Найденные точки Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым Гипербола - определение и вычисление с примерами решения не пересекая эти прямые. Из уравнения гиперболы находим, что Гипербола - определение и вычисление с примерами решения При неограниченном росте (убывании) переменной х величина Гипербола - определение и вычисление с примерами решения следовательно, гипербола будет неограниченно приближаться к прямым Гипербола - определение и вычисление с примерами решения

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b - мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы Гипербола - определение и вычисление с примерами решения

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Гипербола - определение и вычисление с примерами решения Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Гипербола - определение и вычисление с примерами решения Если эксцентриситет Гипербола - определение и вычисление с примерами решения и гипербола становится равнобочной. Если Гипербола - определение и вычисление с примерами решения и гипербола вырождается в два полубесконечных отрезкаГипербола - определение и вычисление с примерами решения

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины: Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения Следовательно, каноническое уравнение гиперболы имеет видГипербола - определение и вычисление с примерами решения

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы - в вершинах эллипса Гипербола - определение и вычисление с примерами решения

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: Гипербола - определение и вычисление с примерами решения илиГипербола - определение и вычисление с примерами решения Следовательно, большая полуось эллипса Гипербола - определение и вычисление с примерами решения а малая полуось Гипербола - определение и вычисление с примерами решения Итак, вершины эллипса расположены на оси Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения на оси Гипербола - определение и вычисление с примерами решения Так как Гипербола - определение и вычисление с примерами решения то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Гипербола - определение и вычисление с примерами решенияИтак, Гипербола - определение и вычисление с примерами решения Согласно условию задачи (см. Рис. 33): Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Гипербола - определение и вычисление с примерами решения Уравнение гиперболы имеет вид: Гипербола - определение и вычисление с примерами решения

Гипербола в высшей математике

Рассмотрим уравнение

Гипербола - определение и вычисление с примерами решения

Решая его относительно Гипербола - определение и вычисление с примерами решения, получим две явные функции

Гипербола - определение и вычисление с примерами решения

или одну двузначную функцию

Гипербола - определение и вычисление с примерами решения

Функция Гипербола - определение и вычисление с примерами решения имеет действительные значения только в том случае, если Гипербола - определение и вычисление с примерами решения. При Гипербола - определение и вычисление с примерами решения функция Гипербола - определение и вычисление с примерами решения действительных значений не имеет. Следовательно, если Гипербола - определение и вычисление с примерами решения, то точек с координатами, удовлетворяющими уравнению (3), не существует.

При Гипербола - определение и вычисление с примерами решения получаемГипербола - определение и вычисление с примерами решения.

При Гипербола - определение и вычисление с примерами решения каждому значению Гипербола - определение и вычисление с примерами решения соответствуют два значения Гипербола - определение и вычисление с примерами решения, поэтому кривая симметрична относительно оси Гипербола - определение и вычисление с примерами решения. Так же можно убедиться в симметрии относительно оси Гипербола - определение и вычисление с примерами решения. Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Гипербола - определение и вычисление с примерами решения

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Гипербола - определение и вычисление с примерами решения

Точки пересечения гиперболы с осью Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы; на рис. 37 они обозначены буквами Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения.

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением Гипербола - определение и вычисление с примерами решения. Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой Гипербола - определение и вычисление с примерами решения, а ординату точки на гиперболе через Гипербола - определение и вычисление с примерами решения. Тогда Гипербола - определение и вычисление с примерами решения, Гипербола - определение и вычисление с примерами решения(рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Гипербола - определение и вычисление с примерами решения

Умножим и разделим правую часть наГипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

или

Гипербола - определение и вычисление с примерами решения

Окончательно

Гипербола - определение и вычисление с примерами решения

Будем придавать Гипербола - определение и вычисление с примерами решения все большие и большие значения, тогда правая часть равенства Гипербола - определение и вычисление с примерами решения будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность Гипербола - определение и вычисление с примерами решения будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой Гипербола - определение и вычисление с примерами решения.

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением Гипербола - определение и вычисление с примерами решения. Также кусок левой ветви, расположенный во второй четверти, приближается к прямой Гипербола - определение и вычисление с примерами решения, а кусок левой ветви, расположенный в третьей четверти, — к прямой Гипербола - определение и вычисление с примерами решения.

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями Гипербола - определение и вычисление с примерами решения (рис. 37).