Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Числовые характеристики случайных величин - определение и примерами решения

Содержание:

Числовые характеристики случайных величин:

Как мы уже выяснили, закон распределения полностью характеризует случайную величину, так как позволяет вычислить вероятности любых событий, связанных с этой случайной величиной. Однако, во-первых, закон распределения не всегда известен, а, во-вторых, для решения многих практических задач совсем необязательно знать закон распределения. Достаточно знать отдельные числовые характеристики, которые в сжатой, компактной форме выражают наиболее существенные черты распределения.

Например, можно составить законы распределения двух случайных величин – числа очков, выбиваемых двумя стрелками, – и выяснить, какой из двух стрелков стреляет лучше. Однако, даже не зная законов распределения, можно сказать, что лучше стреляет тот, кто в с р е д н е м выбивает большее количество очков. Таким средним значением случайной величины является математическое ожидание.

Математическое ожидание случайной величины

Определение: Математическим ожиданием, или средним значением, M(X) д и с к р е т н о й случайной величины X называется сумма произведений всех ее значений на соответствующие им вероятности: Числовые характеристики случайных величин - определение и примерами решения

Заменим в формуле для дискретной случайной величины знак суммирования по всем ее значениям знаком интеграла с бесконечными пределами, дискретный аргумент xi – непрерывно меняющимся Числовые характеристики случайных величин - определение и примерами решения

Рассмотрим свойства математического ожидания.

  1. Математическое ожидание постоянной величины равно самой постоянной: М(С) = С. (5.3)
  2. Постоянный множитель можно выносить за знак математического ожидания, т.е. M(СX) = С·M(X). (5.4)
  3. Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.еЧисловые характеристики случайных величин - определение и примерами решения
  4. Математическое ожидание произведений конечного числа случайных величин равно произведению их математических ожиданий, т.е. M(XY) = M(X)·M(Y). (5.6)
  5. Если все значения случайной величины увеличить (или уменьшить) на постоянную С, то на эту же постоянную С увеличится (или уменьшится) математическое ожидание этой случайной величины: Числовые характеристики случайных величин - определение и примерами решения
  6. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю: Числовые характеристики случайных величин - определение и примерами решения

Пример:

Найти математическое ожидание случайной величины Z = 8X – – 5Y + 7, если известно, что M(X) = 3, M(Y) = 2.

Решение:

Используя свойства 1, 2, 3 математического ожидания, находим Числовые характеристики случайных величин - определение и примерами решения

Итак, мы установили, что математическое ожидание является важной числовой характеристикой случайной величины. Однако одно лишь математическое ожидание не может в достаточной степени характеризовать случайную величину. Вернемся к задаче о стрелках. При равенстве средних значений числа выбиваемых очков, вопрос о том, какой из стрелков стреляет лучше, остается открытым. Однако в этом случае можно сделать предположение, что лучше стреляет тот стрелок, у которого отклонения числа выбитых очков от среднего значения меньше.

Мерой рассеяния значений случайной величины вокруг ее математического ожидания служит дисперсия (слово дисперсия означает «рассеяние).

Дисперсия случайной величины

Определение: Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата ее отклонения от математического ожидания: Числовые характеристики случайных величин - определение и примерами решения

Для дискретной случайной величины X эта формула принимает вид: Числовые характеристики случайных величин - определение и примерами решения

Для непрерывной случайной величины: Числовые характеристики случайных величин - определение и примерами решения На практике для вычисления дисперсии часто удобно пользоваться следующей теоремой.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания: Числовые характеристики случайных величин - определение и примерами решения Для дискретной случайной величины X эта формула принимает вид: Числовые характеристики случайных величин - определение и примерами решения Для непрерывной случайной величины: Числовые характеристики случайных величин - определение и примерами решения

Рассмотрим свойства дисперсии.

  1. Дисперсия постоянной величины равна нулю:Числовые характеристики случайных величин - определение и примерами решения
  2. Постоянный множитель можно выносить за знак дисперсии, возведя его при этом в квадрат, т.е. Числовые характеристики случайных величин - определение и примерами решения
  3. Дисперсия алгебраической суммы конечного числа случайных величин равна сумме их дисперсий, т.е.Числовые характеристики случайных величин - определение и примерами решения
  4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий, т.е. Числовые характеристики случайных величин - определение и примерами решения

Пример №1

Найти дисперсию случайной величины Z = 8X – 5Y + 7, если известно, что D(X) = 1, D(Y) = 2.

Решение:

Используя свойства дисперсии, находим Числовые характеристики случайных величин - определение и примерами решения

Среднее квадратическое отклонение случайной величины

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величинуЧисловые характеристики случайных величин - определение и примерами решения

Определение: Средним квадратическим отклонением (или стандартным отклонением) σ(Х) случайной величины Х называют значение квадратного корня из ее дисперсии: Числовые характеристики случайных величин - определение и примерами решения

Свойства среднего квадратического отклонения вытекают из свойств дисперсии.

Мода и медиана. Квантили

Кроме математического ожидания, дисперсии и среднего квадратического отклонения, в теории вероятностей применяется еще ряд числовых характеристик, отражающих те или иные особенности распределения.

Определение: Модой Мо(Х) случайной величины Х называется ее наиболее вероятное значение (для которого вероятность pi или плотность вероятности f(x) достигает максимума).

Если вероятность или плотность вероятности достигает максимума не в одной, а в нескольких точках, распределение называется полимодальным.

Определение: Медианой Ме(Х) непрерывной случайной величины Х называется такое ее значение, для которого Числовые характеристики случайных величин - определение и примерами решения т. е. вероятность того, что случайная величина Х примет значение, меньшее медианы или большее ее, одна и та же и равна 1/2. Геометрически вертикальная прямая х = Ме(Х), проходящая через точку с абсциссой, равной Ме(Х), делит площадь фигуры под кривой распределения на две равные части. Очевидно, что в точке х = Ме(Х) функция распределения равна 1/2.

Пример №2

Найти моду, медиану случайной величины Х с плотностью вероятности Числовые характеристики случайных величин - определение и примерами решения

Решение:

Кривая распределения представлена на рис. 5.1 Очевидно, что плотность вероятности максимальна при х= Мо(Х) = 1. Медиану Ме(Х) = найдем из условия Числовые характеристики случайных величин - определение и примерами решенияили Числовые характеристики случайных величин - определение и примерами решенияоткуда Числовые характеристики случайных величин - определение и примерами решения Числовые характеристики случайных величин - определение и примерами решения

Наряду с модой и медианой для описания случайной величины используется понятие квантиля.

Определение: Квантилем уровня q (или q-квантилем) называется такое значение хq случайной величины, при котором функция ее распределения принимает значение, равное q, т. е. Числовые характеристики случайных величин - определение и примерами решения

Пример №3

По данным примера 5.3 найти квантиль Числовые характеристики случайных величин - определение и примерами решения

Решение:

Находим функцию распределения Числовые характеристики случайных величин - определение и примерами решения Числовые характеристики случайных величин - определение и примерами решения

Моменты случайных величин. Асимметрия и эксцесс

Среди числовых характеристик случайной величины особое место занимают моменты – начальные и центральные.

Определение: Начальным моментом k-го порядка случайной величины Х называется математическое ожидание k-ой степени этой величины: Числовые характеристики случайных величин - определение и примерами решения Для дискретной случайной величины формула начального момента имеет вид: Числовые характеристики случайных величин - определение и примерами решения Для непрерывной случайной величины: Числовые характеристики случайных величин - определение и примерами решения

Определение: Центральным моментом k-го порядка случайной величины Х называется математическое ожидание k-ой степени отклонения случайной величины Х от ее математического ожидания: Числовые характеристики случайных величин - определение и примерами решения

Для дискретной случайной величины формула центрального момента имеет вид:

Числовые характеристики случайных величин - определение и примерами решения

Для непрерывной случайной величины: Числовые характеристики случайных величин - определение и примерами решения Нетрудно заметить, что при k = 1 первый начальный момент случайной величины Х есть ее математическое ожиданиеЧисловые характеристики случайных величин - определение и примерами решенияпри k = 2 второй центральный момент – дисперсия Числовые характеристики случайных величин - определение и примерами решения

Т.е. первый начальный момент характеризует среднее значение распределения случайной величины Х; второй центральный момент – степень рассеяния распределения Х относительно математического ожидания. Для более подробного описания распределения служат моменты высших порядков.

Третий центральный момент μ3 служит для характеристики ассиметрии (т.е. скошенности ) распределения. Он имеет размерность куба случайной величины. Чтобы получить безразмерную величину, ее делят на Числовые характеристики случайных величин - определение и примерами решения, где σ – среднее квадратическое отклонение случайной величины Х.

Полученная величина А называется коэффициентом асимметрии случайной величины: Числовые характеристики случайных величин - определение и примерами решения Если распределение симметрично относительно математического ожидания, то коэффициент асимметрии равен нулю А = 0.

Числовые характеристики случайных величин - определение и примерами решения

На рис. 5.2 показаны две кривые распределения 1 и 2. Кривая 1 имеет положительную (правостороннюю) асимметрию (А > 0), а кривая 2 – отрицательную (левостороннюю) асимметрию (А < 0).

Четвертый центральный момент μ4 служит для характеристики крутости (островершинности или плосковершинности) распределения.

Эксцессом случайной величины называется число Числовые характеристики случайных величин - определение и примерами решения (Число 3 вычитается из отношения потому, что для нормального распределения, которое встречается наиболее часто, отношениеЧисловые характеристики случайных величин - определение и примерами решения Кривые, более островершинные, чем нормальная, обладают положительным эксцессом, более плосковершинные – отрицательным эксцессом.

Числовые характеристики независимых испытаний

Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р (т.е. повторные независимые испытания). В этом случае математическое ожидание числа появлений события А в n испытаниях находится по формуле M(X) = np, (5.30) а дисперсия по формуле D(X) = npq. (5.31)

Одинаково распределенные взаимно независимые случайные величины

Рассмотрим n взаимно независимых случайных величин Числовые характеристики случайных величин - определение и примерами решения которые имеют одинаковые распределения, а следовательно, одинаковые характеристики (математическое ожидание, дисперсию и др.). Наибольший интерес представляют числовые характеристики среднего арифметического этих величин.

Обозначим среднее арифметическое n взаимно независимых случайных величин через Числовые характеристики случайных величин - определение и примерами решения

Числовые характеристики случайных величин - определение и примерами решения

Сформулируем положения, устанавливающие связь между числовыми характеристиками среднего арифметического Числовые характеристики случайных величин - определение и примерами решения и соответствующими характеристиками каждой отдельной величины.

  1. Математическое ожидание среднего арифметического одинаково распределенных взаимно независимых случайных величин равно математическому ожиданию а каждой из величин:Числовые характеристики случайных величин - определение и примерами решения
  2. Дисперсия среднего арифметического n одинаково распределенных взаимно независимых случайных величин в Числовые характеристики случайных величин - определение и примерами решения раз меньше дисперсии D каждой из величин: Числовые характеристики случайных величин - определение и примерами решения
  3. Среднее квадратическое отклонение n одинаково распределенных взаимно независимых случайных величин в n раз меньше среднего квадратического отклонения σ каждой из величин: Числовые характеристики случайных величин - определение и примерами решения

Пример:

По данному распределению выборки (табл. 2.1) найти эмпирическую функцию распределения.

Числовые характеристики случайных величин - определение и примерами решения

Решение. Определяем объем выборки: Числовые характеристики случайных величин - определение и примерами решения
Определяем относительные частоты вариант (табл. 2.2):  

Числовые характеристики случайных величин - определение и примерами решения

Числовые характеристики случайных величин - определение и примерами решения

Так  как  значение  Числовые характеристики случайных величин - определение и примерами решения  есть  сумма  относительных  частот вариант Числовые характеристики случайных величин - определение и примерами решенияпопадающих в интервал Числовые характеристики случайных величин - определение и примерами решения запишем эмпирическую функцию распределения:

Числовые характеристики случайных величин - определение и примерами решения

График примет вид: 

Числовые характеристики случайных величин - определение и примерами решения