Бесконечно убывающая геометрическая прогрессия с примерами решения
Содержание:
Определение:
Геометрическая прогрессия со знаменателем
Примеры бесконечно убывающих геометрических прогрессий
Приведем примеры бесконечно убывающих геометрических прогрессий.
Пример №1
Последовательность
является бесконечно убывающей геометрической прогрессией с
первым членом и знаменателем
Пример №2
Последовательность
является бесконечно убывающей геометрической прогрессией с первым членом и знаменателем (здесь ). Изобразим четыре первых члена геометрической прогрессии из примера 1 на координатной прямой (рис. 1).
Мы видим, что чем больше номер прогрессии, тем ближе этот член к нулю, т.е. тем меньше его модуль, и с увеличением этот модуль становится меньше любого заданного положительного числа.
Например, если мы зададим число 0,01, то
Изобразим 6 первых членов геометрической прогрессии из примера 2 на координатной прямой (рис. 2).
И в этом примере мы видим, что чем больше номер члена прогрессии, тем ближе этот член к нулю, т. е. тем меньше его модуль, и с увеличением п этот модуль становится меньше любого заданного положительного числа.
Например, если мы зададим число 0,001, то Такую же картину, как и в этих двух примерах, мы наблюдаем в любой бесконечно убывающей геометрической прогрессии чем больше номер п члена прогрессии тем меньше и с увеличением этот, модуль становится меньше любого заданного положительного числа. Это утверждение формулируется еще и так:
стремится к нулю при стремящемся к бесконечности.
Заметим, что если стремится к нулю при стремящемся к бесконечности.
Рассмотрим бесконечно убывающую геометрическую прогрессию с первым членом и знаменателем
Запишем формулу суммы первых членов этой прогрессии и преобразуем это выражение: Обозначим
Тогда получим
Так как стремится к нулю при стремящемся к бесконечности. Значит, стремится к нулю при , стремящемся к бесконечности, т. е. чем больше число (чем больше слагаемых в сумме ), тем меньше разница между и Поэтому число называют суммой бесконечно убывающей геометрической прогрессии.
Пример №3
Найти сумму бесконечно убывающей геометрической прогрессии:
Решение:
Ответ:
Всё о бесконечно убывающей геометрической прогрессии
Пример:
Рассмотрим квадрат со стороной 1 (рис. 57). Если середины его противоположных сторон соединить отрезком, то возникнут два прямоугольника с площадью .
Если теперь середины одного из полученных прямоугольников соединить отрезком, то получится два прямоугольника с площадью . Снова повторив такое действие, получим два прямоугольника с площадью . Будем продолжать этот процесс далее. В результате получим бесконечную убывающую последовательность
у которой каждый следующий член получается из предыдущего умножением на .
Естественно считать, что сумма равна 1, так как она представляет площадь всего данного квадрата.
Записанная сумма содержит бесконечно много слагаемых. Рассмотрим ее часть из слагаемых:
Ее компоненты образуют геометрическую прогрессию со знаменателем . Поэтому
С возрастанием значения переменной значение выражения становится все меньше и меньше: значение переменной всегда можно подобрать так, что значение выражения станет меньше любого малого заранее выбранного числа. Поэтому бесконечную сумму считают равной 1.
Рассмотрим теперь бесконечную геометрическую прогрессию
где . Для таких прогрессий истинно условие , их называют бесконечно убывающими геометрическими прогрессиями.
Сумма бесконечно убывающей геометрической прогрессии
Суммой членов бесконечно убывающей геометрической прогрессии со знаменателем называется число .
Это определение объясняется тем, что с увеличением число все меньше отличается от суммы первых членов этой прогрессии. Действительно,
.
Поскольку , то с увеличением приближается к нулю, а значит, приближается к нулю и вычитаемое . Поэтому сумма приближается к .
Пример №4
Найдем значение суммы
.
Замечаем, что слагаемые этой алгебраической суммы являются членами бесконечно убывающей геометрической прогрессии, у которой и . Поэтому
Мы знаем, что любое рациональное число можно представить десятичной дробью. При этом если разложение на простые множители знаменателя несократимой дроби, представляющей данное рациональное число, содержит только двойки и пятерки, то получается конечная десятичная дробь, а если это разложение содержит хотя бы один простой множитель, отличный от 2 и 5, то получается бесконечная периодическая десятичная дробь. Например:
Повторяющаяся группа цифр называется периодом десятичной дроби, группа цифр между целой частью и периодом называется предпериодом. В записи 0,112(80487) предпериод равен 112, а период — 80 487.
Обыкновенную дробь можно преобразовать в десятичную делением ее числителя на знаменатель. Установим алгоритмы преобразования бесконечной периодической десятичной дроби в обыкновенную.
В дальнейшем мы будем пользоваться записью вида . Она обозначает десятичную дробь, целая часть которой записана с помощью цифр , а дробная — с помощью цифр .
Теорема 7.
Бесконечная периодическая десятичная дробь без предпериода равна обыкновенной дроби, числитель которой есть число, записанное цифрами периода, а знаменатель — число, записанное столькими девятками, сколько есть цифр в периоде.
Доказательство:
Пусть — периодическая десятичная дробь, где — цифры периода. Тогда число можно представить бесконечной суммой:
в которой каждое слагаемое получается из предыдущего умножением на . Это означает, что бесконечную периодическую дробь можно рассматривать как сумму членов бесконечно убывающей геометрической прогрессии с первым
членом и знаменателем . Поэтому
Теорема 7 обосновывает алгоритм представления обыкновенной дробью бесконечной периодической десятичной дроби без предпериода, который изображен схемой, приведенной на рисунке 58.
Пример №5
Представим обыкновенной дробью десятичную дробь 0,(9504). Имеем:
Теорема 8.
Бесконечная десятичная периодическая дробь с предпериодом равна обыкновенной дроби, числитель которой равен разности между числом, записанным цифрами от десятичной запятой до конца первого периода, и числом, записанным цифрами предпериода, а знаменатель — числу, записанному столькими девятками, сколько есть цифр в периоде, и столькими нулями, сколько есть цифр в предпериоде.
Доказательство:
Пусть — периодическая десятичная дробь, где — цифры предпериода, — цифры периода. Тогда число можно представить суммой
или, с учетом теоремы 7, суммой
Преобразуем полученное выражение:
Теорема 8 обосновывает алгоритм представления обыкновенной дробью бесконечной периодической десятичной дроби с предпериодом, который отражен на схеме, представленной на рисунке 59.
Пример №5
Представим обыкновенной дробью десятичную дробь 0,3213(513). Имеем:
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |