Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Трапеция и ее свойства с определением и примерами решения

Содержание:

Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Трапеция и ее свойства с определением и примерами решения

На рисунке 66 изображена трапеция Трапеция и ее свойства с определением и примерами решения

Свойства трапеции

Рассмотрим некоторые свойства трапеции.

1. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.

Так как Трапеция и ее свойства с определением и примерами решения то Трапеция и ее свойства с определением и примерами решения (как сумма внутренних односторонних углов). Аналогично Трапеция и ее свойства с определением и примерами решения

2. Трапеция является выпуклым четырехугольником.

Поскольку Трапеция и ее свойства с определением и примерами решения то Трапеция и ее свойства с определением и примерами решенияАналогично Трапеция и ее свойства с определением и примерами решенияСледовательно, трапеция - выпуклый четырехугольник. 

Высотой трапеции называют перпендикуляр, проведенный из любой точки основания трапеции к прямой, содержащей другое ее основание.

Как правило, высоту трапеции проводят из ее вершины. На рисунке 67 Трапеция и ее свойства с определением и примерами решения - высота трапеции Трапеция и ее свойства с определением и примерами решения

Трапецию называют прямоугольной, если один из ее углов -прямой. На рисунке 68 - прямоугольная трапеция Трапеция и ее свойства с определением и примерами решения Трапеция и ее свойства с определением и примерами решенияОчевидно, что Трапеция и ее свойства с определением и примерами решения Трапеция и ее свойства с определением и примерами решения является меньшей боковой стороной прямоугольной трапеции и ее высотой.

Трапеция и ее свойства с определением и примерами решения

Трапецию называют равнобокой, если ее боковые стороны равны. На рисунке 69 - равнобокая трапеция Трапеция и ее свойства с определением и примерами решения

Свойства равнобокой трапеции

Рассмотрим некоторые важные свойства равнобокой трапеции.

1. В равнобокой трапеции углы при основании равны.

Доказательство:

1) Пусть в трапеции Трапеция и ее свойства с определением и примерами решенияПроведем высоты трапеции Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения из вершин ее тупых углов Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения (рис. 70). Получили прямоугольник Трапеция и ее свойства с определением и примерами решенияПоэтому Трапеция и ее свойства с определением и примерами решения

Трапеция и ее свойства с определением и примерами решения

2) Трапеция и ее свойства с определением и примерами решения (по катету и гипотенузе). Поэтому Трапеция и ее свойства с определением и примерами решения

3) Также Трапеция и ее свойства с определением и примерами решенияНо Трапеция и ее свойства с определением и примерами решенияпоэтому Трапеция и ее свойства с определением и примерами решенияи Трапеция и ее свойства с определением и примерами решенияСледовательно, Трапеция и ее свойства с определением и примерами решения

2. Диагонали равнобокой трапеции равны.

Трапеция и ее свойства с определением и примерами решения

Доказательство:

Рассмотрим рисунок 71. Трапеция и ее свойства с определением и примерами решения (как углы при основании равнобокой трапеции), Трапеция и ее свойства с определением и примерами решения - общая сторона треугольников Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решенияПоэтому Трапеция и ее свойства с определением и примерами решения (по двум сторонам и углу между ними). Следовательно, Трапеция и ее свойства с определением и примерами решения

Пример:

Трапеция и ее свойства с определением и примерами решения - точка пересечения диагоналей равнобокой трапеции Трапеция и ее свойства с определением и примерами решения с основаниями Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения (рис. 71). Докажите, что Трапеция и ее свойства с определением и примерами решения

Доказательство:

Трапеция и ее свойства с определением и примерами решения (доказано выше). Поэтому Трапеция и ее свойства с определением и примерами решенияПо признаку равнобедренного треугольника Трапеция и ее свойства с определением и примерами решения - равнобедренный. Поэтому Трапеция и ее свойства с определением и примерами решенияПоскольку Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решениято Трапеция и ее свойства с определением и примерами решения (так как Трапеция и ее свойства с определением и примерами решения). 

Теорема (признак равнобокой трапеции). Если в трапеции углы при основании равны, то трапеция — равнобокая.

Доказательство:

1) Пусть в Трапеция и ее свойства с определением и примерами решения углы при большем основании Трапеция и ее свойства с определением и примерами решения равны (рис. 70), то есть Трапеция и ее свойства с определением и примерами решенияПроведем высоты Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решенияони равны.

2) Тогда Трапеция и ее свойства с определением и примерами решения (по катету и противолежащему углу). Следовательно, Трапеция и ее свойства с определением и примерами решенияТаким образом, трапеция равнобокая, что и требовалось доказать. 

А еще раньше...

Термин «трапеция» греческого происхождения (по-гречески «трапед-зион» означает «столик», в частности столик для обеда; слова «трапеция» и «трапеза» - однокоренные).

В «Началах» Евклид под термином «трапеция» подразумевал любой четырехугольник, не являющийся параллелограммом. Большинство математиков Средневековья использовали термин «трапеция» с тем же смыслом.

Трапеция в современной трактовке впервые встречается у древнегреческого математика Посидония (I в.), но начиная только с XVIII в. этот термин стал общепринятым для четырехугольников, у которых две стороны параллельны, а две другие - не параллельны.

Свойство средней линии трапеции

Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

Рассмотрим свойство средней линии трапеции.

Теорема (свойство средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:

Пусть Трапеция и ее свойства с определением и примерами решения - данная трапеция, Трапеция и ее свойства с определением и примерами решения - ее средняя линия (рис. 109). Докажем, что Трапеция и ее свойства с определением и примерами решения Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения

Трапеция и ее свойства с определением и примерами решения

1) Проведем луч Трапеция и ее свойства с определением и примерами решения до его пересечения с лучом Трапеция и ее свойства с определением и примерами решенияПусть Трапеция и ее свойства с определением и примерами решения - точка их пересечения. Тогда Трапеция и ее свойства с определением и примерами решения(как внутренние накрест лежащие при параллельных прямых Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения и секущей Трапеция и ее свойства с определением и примерами решения (как вертикальные), Трапеция и ее свойства с определением и примерами решения (по условию). Следовательно, Трапеция и ее свойства с определением и примерами решения (по стороне и двум прилежащим углам), откуда Трапеция и ее свойства с определением и примерами решения Трапеция и ее свойства с определением и примерами решения (как соответственные стороны равных треугольников).

2) Поскольку Трапеция и ее свойства с определением и примерами решения то Трапеция и ее свойства с определением и примерами решения - средняя линия треугольника Трапеция и ее свойства с определением и примерами решения Тогда, по свойству средней линии треугольника, Трапеция и ее свойства с определением и примерами решения а значит, Трапеция и ее свойства с определением и примерами решения Но так как Трапеция и ее свойства с определением и примерами решения то Трапеция и ее свойства с определением и примерами решения

3) Кроме того, Трапеция и ее свойства с определением и примерами решения

Пример:

Докажите, что отрезок средней линии трапеции, содержащийся между ее диагоналями, равен полуразности оснований.

Доказательство:

Пусть Трапеция и ее свойства с определением и примерами решения - средняя линия трапеции Трапеция и ее свойства с определением и примерами решения - точка пересечения Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения - точка пересечения Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения (рис. 110). Пусть Трапеция и ее свойства с определением и примерами решения Докажем, что Трапеция и ее свойства с определением и примерами решения

Трапеция и ее свойства с определением и примерами решения

1) Так как Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения то, по теореме Фалеса, Трапеция и ее свойства с определением и примерами решения -середина Трапеция и ее свойства с определением и примерами решения - середина Трапеция и ее свойства с определением и примерами решения Поэтому Трапеция и ее свойства с определением и примерами решения - средняя линия треугольника Трапеция и ее свойства с определением и примерами решения Трапеция и ее свойства с определением и примерами решения— средняя линия треугольника Трапеция и ее свойства с определением и примерами решения

Тогда Трапеция и ее свойства с определением и примерами решения

2) Трапеция и ее свойства с определением и примерами решения - средняя линия трапеции, поэтому Трапеция и ее свойства с определением и примерами решения

3) Трапеция и ее свойства с определением и примерами решения

Пример:

В равнобокой трапеции диагональ делит острый угол пополам. Найдите среднюю линию трапеции, если ее основания относятся как 3 : 7, а периметр трапеции - 48 см.

Решение:

Пусть Трапеция и ее свойства с определением и примерами решения - данная трапеция, Трапеция и ее свойства с определением и примерами решения - ее средняя линия, Трапеция и ее свойства с определением и примерами решения (рис. 111).

Трапеция и ее свойства с определением и примерами решения

1) Обозначим Трапеция и ее свойства с определением и примерами решенияТогда

Трапеция и ее свойства с определением и примерами решения

2) Трапеция и ее свойства с определением и примерами решения (по условию). Трапеция и ее свойства с определением и примерами решения (как внутренние накрест лежащие при параллельных прямых Трапеция и ее свойства с определением и примерами решения и Трапеция и ее свойства с определением и примерами решения и секущей Трапеция и ее свойства с определением и примерами решения Поэтому Трапеция и ее свойства с определением и примерами решения Следовательно, Трапеция и ее свойства с определением и примерами решения - равнобедренный, у которого Трапеция и ее свойства с определением и примерами решения (по признаку равнобедренного треугольника). Но Трапеция и ее свойства с определением и примерами решения (по условию), значит, Трапеция и ее свойства с определением и примерами решения

3) Учитывая, что Трапеция и ее свойства с определением и примерами решения получим уравнение: Трапеция и ее свойства с определением и примерами решенияоткуда Трапеция и ее свойства с определением и примерами решения

4)    Тогда Трапеция и ее свойства с определением и примерами решения

Ответ. 15 см.

А еще раньше...

То, что средняя линия трапеции равна полусумме оснований, было известно еще древним египтянам; эту информацию содержал папирус Ахмеса (примерно XVII в. до н. э.).

О свойстве средней линии трапеции знали также и вавилонские землемеры; это свойство упоминается и в трудах Герона Александрийского (первая половина I в. н. э.).