Проекция вектора на ось в физике - формулы и определения с примерами
Содержание:
Проекция вектора на ось:
Вы уже знаете, что вектор имеет модуль и направление. При решении задач часто используется понятие проекция вектора на ось. Что такое проекция вектора? Как ее определяют?
Начнем с понятия проекция точки на ось.
Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.
На рисунке 24 точка
Как определяют проекцию вектора на ось
Проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора, взятая со знаком «+» или «-». Знак «+» берут, если угол между вектором и осью острый, а знак «-» — если угол тупой.
На рисунке 25 проекция вектора на ось Ох обозначена через а проекция вектора — через
Проекция — число положительное, т. к. угол на рисунке 25, а — острый. Проекция — число отрицательное т. к. угол на рисунке 25, б — тупой.
А если вектор перпендикулярен оси? Тогда его проекция на эту ось равна нулю (рис. 26).
Проекцию вектора можно выразить через его модуль и угол между вектором и осью.
Рассмотрим треугольник на рисунке 25, а. Его гипотенуза катет а угол между ними равен Следовательно,
Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью.
Это правило справедливо при любых углах между вектором и осью. Подтвердите это с помощью рисунков 25 и 26.
Обратим внимание на еще одно важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.
С помощью рисунка 27, а, б убедитесь, что из векторного равенства следует равенство для проекций: Не забывайте о знаках проекций.
Можно ли найти модуль и направление вектора по его проекциям на координатные оси
Рассмотрим вектор лежащий в плоскости (рис. 28). Его проекции на оси определим из рисунка:
Модуль вектора находим по теореме Пифагора из треугольника ACD: Разделив на получим: По значению косинуса находим угол
Таким образом, вектор, лежащий в заданной плоскости, полностью определяется двумя проекциями на оси координат.
Вектор в пространстве определяется тремя проекциями: (рис. 29).
Главные выводы:
- Проекция вектора на ось — это длина отрезка, заключенного между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «-».
- Если угол между вектором и осью острый, то его проекция на эту ось положительна, если угол тупой — отрицательна, если прямой — равна нулю.
- Проекция вектора на ось равна произведению его модуля на косинус угла между вектором и осью.
- Проекция суммы векторов на ось равна сумме их проекций на эту ось.
Пример №1
1. Определите сумму и разность взаимно перпендикулярных векторов (рис. 30). Найдите модули векторов суммы и разности
Решение
Сумму векторов находим по правилу треугольника (рис. 31, а) или параллелограмма (рис. 31, б). Так как векторы взаимно перпендикулярны, модуль вектора находим по теореме Пифагора: Разность векторов определим по правилам вычитания векторов (рис. 32, а, б).
Модуль вектора находим аналогично:
Ответ:
Пример №2
Выразите вектор через векторы (рис. 33). Как связаны между собой проекции этих векторов на оси Ох и Оу?
Решение
По правилу треугольника находим: Отсюда Определив координаты начальных и конечных точек векторов находим проекции этих векторов:
Вычислением убедимся, что проекции векторов связаны теми же равенствами, что и сами векторы:
Ответ:
Рекомендую подробно изучить предметы: |
Ещё лекции с примерами решения и объяснением: |